As the plant-based food market grows, demand for plant protein is also increasing. Proteins are a major component in foods and are key to developing desired structures and textures. Seed storage proteins are the main plant proteins in the human diet. They are abundant in, for example, legumes or defatted oilseeds, which makes them an excellent candidate to use in the development of novel plant-based foods. However, they often have low and inflexible functionalities, as in nature they are designed to remain densely packed and inert within cell walls until they are needed during germination. Enzymes are often used by the food industry, for example, in the production of cheese or beer, to modify ingredient properties. Although they currently have limited applications in plant proteins, interest in the area is exponentially increasing. The present review first considers the current state and potential of enzyme utilization related to plant proteins, including uses in protein extraction and post-extraction modifications. Then, relevant opportunities and challenges are critically discussed. The main challenges relate to the knowledge gap, the high cost of enzymes, and the complexity of plant proteins as substrates. The overall aim of this review is to increase awareness, highlight challenges, and explore ways to address them.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10341344PMC
http://dx.doi.org/10.3390/foods12132518DOI Listing

Publication Analysis

Top Keywords

plant proteins
20
proteins
7
plant
6
applications enzyme
4
enzyme technology
4
technology enhance
4
enhance transition
4
transition plant
4
proteins review
4
review plant-based
4

Similar Publications

Lotus japonicus-ROOT HAIR LESS1-LIKE1 (LRL1) of Arabidopsis thaliana encodes a basic helix-loop-helix (bHLH) transcription factor (TF) involved in root hair development. Root hair development is regulated by an elaborate transcriptional network, in which GLABRA2 (GL2), a key negative regulator, directly represses bHLH TF genes, including LRL1 and ROOT HAIR DEFECTIVE6 (RHD6). Although RHD6 and its paralogous TFs have been shown to connect downstream to genes involved in cell morphological events such as endomembrane and cell wall modification, the network downstream of LRL1 remains elusive.

View Article and Find Full Text PDF

Melatonin increases Pb tolerance in P. ovata seedlings via the regulation of growth and stress-related phytohormones, ROS scavenging and genes responsible for melatonin synthesis, metal chelation, and stress defense. Lead (Pb) is a highly toxic heavy metal that accumulates in plants through soil and air contamination and impairs its plant growth and development.

View Article and Find Full Text PDF

SUPPRESSOR OF MAX2 1 (SMAX1) and SMAX1-LIKE (SMXL) proteins comprise a family of plant growth regulators that includes downstream targets of the karrikin (KAR)/KAI2 ligand (KL) and strigolactone (SL) signaling pathways. Following the perception of KAR/KL or SL signals by α/β hydrolases, some types of SMXL proteins are polyubiquitinated by an E3 ubiquitin ligase complex containing the F-box protein MORE AXILLARY GROWTH2 (MAX2)/DWARF3 (D3), and proteolyzed. Because SMXL proteins interact with TOPLESS (TPL) and TPL-related (TPR) transcriptional corepressors, SMXL degradation initiates changes in gene expression.

View Article and Find Full Text PDF

In the context of climate changing environments, microalgae can be excellent organisms to understand molecular mechanisms that activate survival strategies under stress. Chlamydomonas reinhardtii signalling mutants are extremely useful to decipher which strategies photosynthetic organisms use to cope with changeable environments. The mutant vip1-1 has an altered profile of pyroinositol polyphosphates (PP-InsPs), which are signalling molecules present in all eukaryotes and have been connected to P signalling in other organisms including plants, but their implications in other nutrient signalling are still under evaluation.

View Article and Find Full Text PDF

The gene GAD1 encodes a glutamate decarboxylase, which is a rate-limiting enzyme for the biosynthesis of endogenous γ-aminobutyrate acid (GABA), but a potential role of GAD1 in regulating cadmium (Cd) tolerance needs to be further elucidated in plants. The objective of this study was to investigate Cd tolerance of creeping bentgrass (Agrostis stolonifera) and transgenic yeast (Saccharomyces cerevisiae) or Arabidopsis thaliana overexpressing AsGAD1. The Cd-tolerant creeping bentgrass cultivar LOFTSL-93 accumulated more endogenous GABA in relation to a significant upregulation of AsGAD1 in leaf and root than the Cd-sensitive W66569 in response to Cd stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!