In this study, lipoxygenase (LOX) extracted from dry-cured mackerel was purified, resulting in a 4.1-fold purification factor with a specific activity of 493.60 U/min·g. LOX enzymatic properties were assessed, referring to its optimal storage time (1-2 days), temperature (30 °C), and pH value (7.0). The autoxidation and LOX-induced oxidation of palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:2n9c), linoleic acid (C18:2n6c), arachidonic acid (C20:4), EPA (C20:5), and DHA (C22:6n3) were simulated to explore the main metabolic pathways of key flavors in dry-cured mackerel. The results showed that the highest LOX activity was observed when arachidonic acid was used as a substrate. Aldehydes obtained from LOX-treated C18:1n9c and C18:2n6c oxidation, which are important precursors of flavors, were the most abundant. The key flavors in dry-cured mackerel were found in the oxidative products of C16:0, C18:0, C18:1n9c, C18:2n6c, and C20:4. Heptanaldehyde could be produced from autoxidation or LOX-induced oxidation of C18:0 and C18:1n9c, while nonal could be produced from C18:1n9c and C18:2n6c oxidation. Metabolic pathway analysis revealed that C18:1n9c, C18:2n6c, EPA, and DHA made great contributions to the overall flavor of dry-cured mackerel. This study may provide a relevant theoretical basis for the scientific control of the overall taste and flavor of dry-cured mackerel and further standardize its production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10340243 | PMC |
http://dx.doi.org/10.3390/foods12132504 | DOI Listing |
Food Res Int
January 2025
Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China. Electronic address:
To meet the demand of consumers for high-quality dry-cured fish. This study investigates the relationship between microbial diversity and the changes in physicochemical properties and non-volatile flavor compounds of dry-cured Spanish mackerel (DCSM) throughout the curing process. Our findings demonstrate that moisture content significantly decreased during curing, while NaCl generally increased.
View Article and Find Full Text PDFFood Chem
August 2024
SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. Electronic address:
Cured Spanish mackerel has a promising market owing to its nutritious nature as well as ease of transportation and preservation. However, the nutritional and flavor formation mechanism of Spanish mackerel after curing and drying is unclear. To overcome this problem, the effects of different processing conditions on the free amino acid, microbial community, and flavor of Spanish mackerel were explored.
View Article and Find Full Text PDFInt J Food Microbiol
April 2024
Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia (BO), Italy.
Food Chem
June 2024
College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Beijing, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China. Electronic address:
Food Res Int
December 2023
College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Beijing, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China. Electronic address:
This study aimed to evaluate the contribution and mechanisms of Lactobacillus plantarum and Zygosaccharomyces mellis inoculation to the enhancement of protein-derived volatile flavor compounds (PVFCs) in low-salt dry-cured mackerel (LDCM). The contents of PVFCs (3-methylbutanal and phenylacetaldehyde), intermediates (α-ketoisocaproate and phenylpyruvic acid), precursor (α-ketoisocaproate and phenylpyruvic acid), and key enzyme activities (protease and transaminase) significantly increased (p < 0.05) in probiotic-treated groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!