Although MSCs grant pronounced potential for cell therapies, several factors, such as their heterogeneity restrict their use. To overcome these limitations, iMSCs (MSCs derived from induced pluripotent stem cells (iPSCs) have attracted attention. Here, we analyzed the transcriptome of MSCs, iPSCs and iMSCs derived from healthy individuals and osteoarthritis (OA) patients and explored miRNA-mRNA interactions during these transitions. We performed RNA-seq and gene expression comparisons and Protein-Protein-Interaction analysis followed by GO enrichment and KEGG pathway analyses. MicroRNAs' (miRNA) expression profile using miRarrays and differentially expressed miRNA's impact on regulating iMSCs gene expression was also explored. Our analyses revealed that iMSCs derivation from iPSCs favors the expression of genes conferring high proliferation, differentiation, and migration properties, all of which contribute to a rejuvenated state of iMSCs compared to primary MSCs. Additionally, our exploration of the involvement of miRNAs in this rejuvenated iMSCs transcriptome concluded in twenty-six miRNAs that, as our analysis showed, are implicated in pluripotency. Notably, the identified here interactions between hsa-let7b/i, hsa-miR-221/222-3p, hsa-miR-302c, hsa-miR-181a, hsa-miR-331 with target genes , , , and could prove to be the necessary tools that will convey iMSCs into the ideal mean for cell therapy in osteoarthritis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10340510 | PMC |
http://dx.doi.org/10.3390/cells12131756 | DOI Listing |
Osteochondral defects (OCD) pose a significant clinical challenge due to the limited self-repair capacity of cartilage, leading to pain, joint dysfunction, and progression to osteoarthritis. Cellular implantations of adult mesenchymal stem cells (MSCs) enhanced with treatment of factors, such as small molecule Kartogenin (KGN) to promote chondrogenic differentiation, are promising but these cells often encounter hypertrophy during differentiation, compromising long-term stability. Induced pluripotent stem cell-derived MSCs (iMSCs) offer greater proliferative and differentiation capacity than MSCs and may provide a superior source of cells for cartilage repair.
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany.
Cell functionality, driven by remarkable plasticity, is strongly influenced by mechanical forces that regulate mesenchymal stem cell (MSC) fate. This study explores the biomechanical properties of jaw periosteal cells (JPCs) and induced mesenchymal stem cells (iMSCs) under different culture conditions. We cultured both JPCs and iMSCs (n = 3) under normoxic and hypoxic environments, with and without osteogenic differentiation, and on laminin- or gelatin-coated substrates.
View Article and Find Full Text PDFIUBMB Life
January 2025
Cheerland Watson Precision Medicine Ltd, Shenzhen, China.
Parkinson's disease (PD), characterized by progressive degeneration of dopaminergic neurons in substantia nigra, has no disease-modifying therapy. Mesenchymal stem cell (MSC) therapy has shown great promise as a disease-modifying solution for PD. Induced pluripotent stem cell-derived MSC (iMSC) not only has stronger neural repair function, but also helps solve the problem of MSC heterogeneity.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
December 2024
Department of Pathology, The First Affiliated Hospital of Soochow University, 215123 Suzhou, Jiangsu, China.
Background: Psoriasis is a chronic and incurable skin inflammation driven by an abnormal immune response. Our study aims to investigate the potential of interferon-γ (IFN-γ) primed mesenchymal stem cells (IMSCs) in targeting T cells to attenuate psoriasis-like inflammation, and to elucidate the underlying molecular mechanism involved.
Methods: Mesenchymal stem cells (MSCs) were isolated from the umbilical cord and identified based on their surface markers.
Front Bioeng Biotechnol
December 2024
Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, United States.
Introduction: Tendon injuries represent an ongoing challenge in clinical practice due to poor regenerative capacity, structure, and biomechanical function recovery of ruptured tendons. This study is focused on the assessment of a novel strategy to repair ruptured Achilles tendons in a Nude rat model using stem cell-seeded biomaterial.
Methods: Specifically, we have used induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells (iMSCs) overexpressing the early tendon marker Scleraxis (SCX, iMSC, iTenocytes) in combination with an elastic collagen scaffold.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!