The International Classification of Diseases (ICD) code is a diagnostic classification standard that is frequently used as a referencing system in healthcare and insurance. However, it takes time and effort to find and use the right diagnosis code based on a patient's medical records. In response, deep learning (DL) methods have been developed to assist physicians in the ICD coding process. Our findings propose a deep learning model that utilized clinical notes from medical records to predict ICD-10 codes. Our research used text-based medical data from the outpatient department (OPD) of a university hospital from January to December 2016. The dataset used clinical notes from five departments, and a total of 21,953 medical records were collected. Clinical notes consisted of a subjective component, objective component, assessment, plan (SOAP) notes, diagnosis code, and a drug list. The dataset was divided into two groups: 90% for training and 10% for test cases. We applied natural language processing (NLP) technique (word embedding, Word2Vector) to process the data. A deep learning-based convolutional neural network (CNN) model was created based on the information presented above. Three metrics (precision, recall, and F-score) were used to calculate the achievement of the deep learning CNN model. Clinically acceptable results were achieved through the deep learning model for five departments (precision: 0.53-0.96; recall: 0.85-0.99; and F-score: 0.65-0.98). With a precision of 0.95, a recall of 0.99, and an F-score of 0.98, the deep learning model performed the best in the department of cardiology. Our proposed CNN model significantly improved the prediction performance for an automated ICD-10 code prediction system based on prior clinical information. This CNN model could reduce the laborious task of manual coding and could assist physicians in making a better diagnosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10340491 | PMC |
http://dx.doi.org/10.3390/diagnostics13132297 | DOI Listing |
MAGMA
January 2025
Aix Marseille Univ, CNRS, CRMBM, Marseille, France.
Objective: Segmentation of individual thigh muscles in MRI images is essential for monitoring neuromuscular diseases and quantifying relevant biomarkers such as fat fraction (FF). Deep learning approaches such as U-Net have demonstrated effectiveness in this field. However, the impact of reducing neural network complexity remains unexplored in the FF quantification in individual muscles.
View Article and Find Full Text PDFJ Neural Transm (Vienna)
January 2025
Postgraduate Program in Physical Therapy (PPGFT), Department of Physical Therapy (DFisio), University of São Carlos (UFSCar), Washington Luis Road, Km 235, São Carlos, São Paulo, 13565-905, Brazil.
The cerebellum is a structure in the suprasegmental nervous system classically known for its involvement in motor functions such as motor planning, coordination, and motor learning. However, with scientific advances, other functions of the cerebellum, such as cognitive, emotional, and autonomic processing, have been discovered. Currently, there is a body of evidence demonstrating the involvement of the cerebellum in nociception and pain processing.
View Article and Find Full Text PDFActa Otolaryngol
January 2025
Department of Otorhinolaryngology, Institute of Science Tokyo, Tokyo, Japan.
Background: Recent advances in artificial intelligence have facilitated the automatic diagnosis of middle ear diseases using endoscopic tympanic membrane imaging.
Aim: We aimed to develop an automated diagnostic system for middle ear diseases by applying deep learning techniques to tympanic membrane images obtained during routine clinical practice.
Material And Methods: To augment the training dataset, we explored the use of generative adversarial networks (GANs) to produce high-quality synthetic tympanic images that were subsequently added to the training data.
Clin Transl Sci
January 2025
Global Biometrics and Data Management, Pfizer Research and Development, New York, New York, USA.
The pharmaceutical industry constantly strives to improve drug development processes to reduce costs, increase efficiencies, and enhance therapeutic outcomes for patients. Model-Informed Drug Development (MIDD) uses mathematical models to simulate intricate processes involved in drug absorption, distribution, metabolism, and excretion, as well as pharmacokinetics and pharmacodynamics. Artificial intelligence (AI), encompassing techniques such as machine learning, deep learning, and Generative AI, offers powerful tools and algorithms to efficiently identify meaningful patterns, correlations, and drug-target interactions from big data, enabling more accurate predictions and novel hypothesis generation.
View Article and Find Full Text PDFSmall Methods
January 2025
Dept. Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK.
The integration of Machine Learning (ML) with super-resolution microscopy represents a transformative advancement in biomedical research. Recent advances in ML, particularly deep learning (DL), have significantly enhanced image processing tasks, such as denoising and reconstruction. This review explores the growing potential of automation in super-resolution microscopy, focusing on how DL can enable autonomous imaging tasks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!