Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Sleep-disordered breathing (SDB) is highly prevalent after stroke and is considered to be a risk factor for poor post-stroke outcomes. The aim of this observational study was to evaluate the effect of nocturnal respiratory-related indices based on nocturnal respiratory polygraphy on clinical outcomes (including mortality and non-fatal events) in patients with ischemic stroke.
Methods: A total of 328 consecutive patients (181 (55%) males, mean age 65.8 ± 11.2 years old) with confirmed ischemic stroke admitted to a stroke unit within 24 h after stroke onset were included in the analysis. All patients underwent standard diagnostic and treatment procedures, and sleep polygraphy was performed within the clinical routine in the first 72 h after admission. The long-term outcomes were assessed by cumulative endpoint (death of any cause, new non-fatal myocardial infarction, new non-fatal stroke/transient ischemic attack, emergency revascularization, emergency hospitalization due to the worsening of cardiovascular disease). A Cox-regression analysis was applied to evaluate the effects of nocturnal respiratory indices on survival.
Results: The mean follow-up period comprised 12 months (maximal-48 months). Patients with unfavourable outcomes demonstrated a higher obstructive apnea-hypopnea index, a higher hypoxemia burden assessed as a percent of the time with SpO < 90%, a higher average desaturation drop, and a higher respiratory rate at night. Survival time was significantly lower (30.6 (26.5; 34.7) versus 37.9 (34.2; 41.6) months (Log Rank 6.857, = 0.009)) in patients with higher hypoxemia burden (SpO < 90% during ≥2.1% versus <2.1% of total analyzed time). However, survival time did not differ depending on the SDB presence assessed by AHI thresholds (either ≥5 or ≥15/h). The multivariable Cox proportional hazards regression (backward stepwise analysis) model demonstrated that the parameters of hypoxemia burden were significantly associated with survival time, independent of age, stroke severity, stroke-related medical interventions, comorbidities, and laboratory tests.
Conclusion: Our study demonstrates that the indices of hypoxemia burden have additional independent predictive value for long-term outcomes (mortality and non-fatal cardiovascular events) after ischemic stroke.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10340264 | PMC |
http://dx.doi.org/10.3390/diagnostics13132246 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!