The development of automatic chest X-ray (CXR) disease classification algorithms is significant for diagnosing thoracic diseases. Owing to the characteristics of lesions in CXR images, including high similarity in appearance of the disease, varied sizes, and different occurrence locations, most existing convolutional neural network-based methods have insufficient feature extraction for thoracic lesions and struggle to adapt to changes in lesion size and location. To address these issues, this study proposes a high-resolution classification network with dynamic convolution and coordinate attention (HRCC-Net). In the method, this study suggests a parallel multi-resolution network in which a high-resolution branch acquires essential detailed features of the lesion and multi-resolution feature swapping and fusion to obtain multiple receptive fields to extract complicated disease features adequately. Furthermore, this study proposes dynamic convolution to enhance the network's ability to represent multi-scale information to accommodate lesions of diverse scales. In addition, this study introduces a coordinate attention mechanism, which enables automatic focus on pathologically relevant regions and capturing the variations in lesion location. The proposed method is evaluated on ChestX-ray14 and CheXpert datasets. The average AUC (area under ROC curve) values reach 0.845 and 0.913, respectively, indicating this method's advantages compared with the currently available methods. Meanwhile, with its specificity and sensitivity to measure the performance of medical diagnostic systems, the network can improve diagnostic efficiency while reducing the rate of misdiagnosis. The proposed algorithm has great potential for thoracic disease diagnosis and treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10340191 | PMC |
http://dx.doi.org/10.3390/diagnostics13132165 | DOI Listing |
Sci Rep
January 2025
Department of Artificial Intelligence and Data Science, College of Computer Science and Engineering, University of Hail, Hail, Saudi Arabia.
In the present digital scenario, the explosion of Internet of Things (IoT) devices makes massive volumes of high-dimensional data, presenting significant data and privacy security challenges. As IoT networks enlarge, certifying sensitive data privacy while still employing data analytics authority is vital. In the period of big data, statistical learning has seen fast progressions in methodological practical and innovation applications.
View Article and Find Full Text PDFSci Rep
January 2025
Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang, 110168, Liaoning, China.
The problem of ground-level ozone (O) pollution has become a global environmental challenge with far-reaching impacts on public health and ecosystems. Effective control of ozone pollution still faces complex challenges from factors such as complex precursor interactions, variable meteorological conditions and atmospheric chemical processes. To address this problem, a convolutional neural network (CNN) model combining the improved particle swarm optimization (IPSO) algorithm and SHAP analysis, called SHAP-IPSO-CNN, is developed in this study, aiming to reveal the key factors affecting ground-level ozone pollution and their interaction mechanisms.
View Article and Find Full Text PDFPLoS One
January 2025
School of Information and Communication Engineering, Beijing University of Information Science and Technology, Bei Jing City, China.
To enhance the intelligent classification of computer vulnerabilities and improve the efficiency and accuracy of network security management, this study delves into the application of a comprehensive classification system that integrates the Memristor Neural Network (MNN) and an improved Temporal Convolutional Neural Network (TCNN) in network security management. This system not only focuses on the precise classification of vulnerability data but also emphasizes its core role in strengthening the network security management framework. Firstly, the study designs and implements a neural network model based on memristors.
View Article and Find Full Text PDFACS Omega
January 2025
School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China.
It is of great significance to realize the accurate prediction of the key output response of the chemical synthetic ammonia process for optimizing system performance and operation monitoring. Because many key intermediate variables of complex systems are difficult to measure comprehensively, there are great difficulties and errors in mechanism analysis and identification modeling techniques. Based on random forest (RF) variable selection, a deep neural network combining temporal convolutional network (TCN) and transformer is proposed to predict the output variables of the synthetic ammonia process.
View Article and Find Full Text PDFSci Rep
January 2025
School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, India.
This study introduces a novel ensemble learning technique namely Multi-Armed Bandit Ensemble (MAB-Ensemble), designed for lane detection in road images intended for autonomous vehicles. The foundation of the proposed MAB-Ensemble technique is inspired in terms of Multi-Armed bandit optimization to facilitate efficient model selection for lane segmentation. The benchmarking dataset namely TuSimple is used for training, validating and testing the proposed and existing lane detection techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!