AI Article Synopsis

  • The study introduces a new type of nanosensor made from hybrid nanoshells, which combine metal nanoparticles with a molecular coating and are analyzed using plasmon-exciton coupling.
  • The research utilizes simulations to explore how these nanoshells interact with electromagnetic radiation and highlights their applications in optoelectronic devices and sensors.
  • Results show that a cone-shaped nanoshell with a silver core exhibits the highest sensitivity to environmental refractive index changes, demonstrating key signatures for rapid, non-invasive sensor responses.

Article Abstract

A proposed nanosensor based on hybrid nanoshells consisting of a core of metal nanoparticles and a coating of molecules is simulated by plasmon-exciton coupling in semi classical approach. We study the interaction of electromagnetic radiation with multilevel atoms in a way that takes into account both the spatial and the temporal dependence of the local fields. Our approach has a wide range of applications, from the description of pulse propagation in two-level media to the elaborate simulation of optoelectronic devices, including sensors. We have numerically solved the corresponding system of coupled Maxwell-Liouville equations using finite difference time domain (FDTD) method for different geometries. Plasmon-exciton hybrid nanoshells with different geometries are designed and simulated, which shows more sensitive to environment refractive index (RI) than nanosensor based on localized surface plasmon. The effects of nanoshell geometries, sizes, and quantum emitter parameters on the sensitivity of nanosensors to changes in the RI of the environment were investigated. It was found that the cone-like nanoshell with a silver core and quantum emitter shell had the highest sensitivity. The tapered shape of the cone like nanoshell leads to a higher density of plasmonic excitations at the tapered end of the nanoshell. Under specific conditions, two sharp, deep LSPR peaks were evident in the scattering data. These distinguishing features are valuable as signatures in nanosensors requiring fast, noninvasive response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10344916PMC
http://dx.doi.org/10.1038/s41598-023-38475-1DOI Listing

Publication Analysis

Top Keywords

quantum emitter
12
hybrid nanoshells
12
nanoshell geometries
8
geometries sizes
8
sizes quantum
8
emitter parameters
8
parameters sensitivity
8
plasmon-exciton hybrid
8
nanosensor based
8
nanoshell
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!