In this study, the effect of cold isostatic pressure (CIP) pretreatment on the physicochemical properties and subsequent anaerobic digestion (AD) performance of corn straw (CS) was explored. The CS was subjected to CIP pretreatment by pressures of 200, 400 and 600 MPa, respectively, while AD was carried out at medium temperature (35 ± 2 °C). The results showed that CIP pretreatment disrupted the dense structure of the CS and altered the crystallinity index and surface hydrophobicity of the CS, thereby affecting the AD process. The presence of CIP pretreatment increased the initial reducing sugar concentration by 0.11-0.27 g/L and increased the maximum volatile fatty acids content by 112.82-436.64 mg/L, which facilitated the process of acidification and hydrolysis of the AD. It was also observed that the CIP pretreatment maintained the pH in the range of 6.37-7.30, maintaining the stability of the overall system. Moreover, the cumulative methane production in the CIP pretreatment group increased by 27.17 %-64.90 % compared to the control group. Analysis of the microbial results showed that CIP pretreatment increased the abundance of cellulose degrading bacteria Ruminofilibacter from 21.50 % to 27.53 % and acetoclastic methanogen Methanosaeta from 45.48 % to 56.92 %, thus facilitating the hydrolysis and methanogenic stages. The energy conversion analysis showed that CIP is a green and non-polluting pretreatment strategy for the efficient AD of CS to methane.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.165442DOI Listing

Publication Analysis

Top Keywords

cip pretreatment
28
pretreatment
9
corn straw
8
cold isostatic
8
isostatic pressure
8
methane production
8
cip
8
pretreatment increased
8
green chemical-free
4
chemical-free pretreatment
4

Similar Publications

Background: Patients who suffered from sepsis-induced acute lung injury (ALI) always need sedation for mechanical ventilation in intensive care unit (ICU). Ciprofol(Cip), a novel intravenous anesthetic, was revealed to have anti-inflammatory and antioxidative properties. Ferroptosis, categorized as a type of newly non-apoptotic cell death, participates in the development of lung injury.

View Article and Find Full Text PDF

In this experiment, polyphenolic substances were extracted from Camellia sinensis seeds (CSS) using a synergistic treatment of cold isostatic pressure (CIP) and cellulase. The effects of pressure, treatment time, and cellulase addition on the experiment were investigated. And the optimal extraction conditions were established by single factor experiment and Box-benhken experiments: the pressure applied by CIP was 408.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the relationship between interstitial lung abnormality (ILA) and checkpoint inhibitor-related pneumonitis (CIP) in patients with small-cell lung cancer (SCLC) undergoing first-line chemoimmunotherapy.
  • It was found that ILA is present in 32.03% of patients studied, and a significant number (12.50%) developed CIP, with ILA and past thoracic radiation therapy identified as independent risk factors for CIP.
  • The presence of ILA also indicated a higher risk of mortality, indicating that SCLC patients with ILA face both increased chances of developing CIP and a poorer prognosis overall.
View Article and Find Full Text PDF

Background: Fluoroquinolones (FQs) are widely used for their excellent antimicrobial properties, yet their release into aquatic environments pose risks to ecosystems and public health. The accurate monitoring and analysis of FQs present challenges due to their low concentrations and the complex matrices found in actual environmental samples. To address the need for auto-pretreatment and on-line instrumental analysis, developing new microextraction materials and protocols is crucial.

View Article and Find Full Text PDF

In this study, a straightforward and quick analytical technique based on the self-weighted alternating trilinear decomposition (SWATLD) algorithm in conjunction with excitation-emission matrix (EEM) fluorescence for the simultaneous determination of the antibiotics levofloxacin (LVFX) and ciprofloxacin (CIP) in environmental waters and sediments was developed. This approach completely utilizes the "second-order advantage" and inherits the great sensitivity of classic fluorescence. It replaces or improves the conventional "physical/chemical separation" with "mathematical separation", enabling direct and quick quantification of the target analytes even in the presence of unknown interferences, greatly streamlining sample preparation procedures, consuming less solvent, and speeding up analysis time, and allows successful and environmentally friendly solution of overlapping fluorescence spectra of multiple components in complicated environmental matrices without cumbersome pretreatment steps and complex and expensive instrumentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!