Molecular modeling of Mannich phenols as reactivators of human acetylcholinesterase inhibited by A-series nerve agents.

Chem Biol Interact

Laboratory of Molecular Modeling Applied to Chemical and Biological Defense (LMCBD), Military Institute of Engineering, 22290-270, Rio de Janeiro, RJ, Brazil; Université du Québec, INRS-Centre Armand Frappier Santé et Biotechnologie, 531 Boulevard des Prairies, Laval, QC, Canada; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic. Electronic address:

Published: September 2023

The A-series is the most recent generation of chemical warfare nerve agents (CWA) which act directly on the inhibition of the human acetylcholinesterase (HssAChE) enzyme. These compounds lack accurate experimental data on their physicochemical properties, and there is no evidence that traditional antidotes effectively reactivate HssAChE inhibited by them. In the search for potential antidotes, we employed virtual screening, molecular docking, and molecular dynamics (MD) simulations for the theoretical assessment of the performance of a library of Mannich phenols as potential reactivators of HssAChE inhibited by the Novichok agents A-230, A-232, and A-234, in comparison with the commercial oximes pralidoxime (2-PAM), asoxime (HI-6), trimedoxime (TMB-4), and obidoxime. Following the near-attack conformation (NAC) approach, our results suggest that the compounds assessed would face difficulties in triggering the proposed nucleophilic in-line displacement mechanism. Despite this, it was observed that certain Mannich phenols presented similar or superior results to those obtained by reference oximes against A-232 and A-234 model, suggesting that these compounds can adopt more favourable conformations. Additional binding energy calculations confirmed the stability of the model/ligands complexes and the reactivating potential observed in the molecular docking and MD studies. Our findings indicate that the Mannich phenols could be alternative antidotes and that their efficacy should be evaluated experimentally against the A-series CWA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2023.110622DOI Listing

Publication Analysis

Top Keywords

mannich phenols
16
human acetylcholinesterase
8
nerve agents
8
hssache inhibited
8
molecular docking
8
a-232 a-234
8
molecular
4
molecular modeling
4
mannich
4
modeling mannich
4

Similar Publications

The immobilisation of essential oil components (EOCs) on food-grade supports is a promising strategy for preserving liquid foods without the drawbacks of direct EOC addition such as poor solubility, high volatility, and sensory alterations. This study presents a novel method for covalently immobilising EOCs, specifically thymol and carvacrol, on SiO particles (5-15 µm) using the Mannich reaction. This approach simplifies conventional covalent immobilisation techniques by reducing the steps and reagents while maintaining antimicrobial efficacy and preventing compound migration.

View Article and Find Full Text PDF

Hematoxylin (HT) is a natural staining dye used in histopathology, often combined with Eosin for H&E staining. A poly(hematoxylin-co-l-lysine) (p(HT-co-l)) nanonetwork was synthesized through a one-step Mannich condensation reaction using formaldehyde as a linking agent. The resulting p(HT-co-l) nanogels had an average size of about 200 nm and exhibited a smooth surface and desirable functional groups such as -OH, -NH, and -COOH, as recognized by FT-IR analysis.

View Article and Find Full Text PDF

The purpose of this study was to design nanocarriers with small-size and antioxidant properties for the effective encapsulation of curcumin. Here, procyanidins, vanillin, and amino acids were used to successfully prepare nanocarriers of a controllable size in the range of 328~953 nm and to endow antioxidant ability based on a one-step self-assembly method. The reaction involved a Mannich reaction on the phenolic hydroxyl groups of procyanidins, aldehyde groups of vanillin, and amino groups of amino acids.

View Article and Find Full Text PDF

A phenolic Mannich base derived from 1'-hydroxy-2'-acetonaphthone (HAN) as a substrate and morpholine as an amine reagent was synthesized and structurally characterized. The sensing ability toward various metal ions of the s-, p- and d-block of this molecule that has the binding site for metal ions in the starting -hydroxyphenone preserved was examined. Interaction between this phenolic Mannich base and Al, Cr, Cu and Co leads to modifications of the sensing molecule's absorption spectrum.

View Article and Find Full Text PDF

Effects of ultrasonic-alkali integrated extraction combined with Mannesi reaction on the antimicrobial properties of rice straw lignin and enhancement strategies.

Int J Biol Macromol

January 2025

Department of Packaging Engineering, Jiangnan University, 1800 Li Hu Avenue, Wuxi 214122, PR China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, 1800 Li Hu Avenue, Wuxi 214122, PR China. Electronic address:

Lignin is one of the most abundant and underused biopolymers in nature with limited antimicrobial activities. Herein, this work aimed to enhance the antimicrobial activity of lignin extracted from waste rice straw by ultrasonic-alkali integrated extraction (USP-AT) and modify the alkali lignin through Mannich reaction to improve its antimicrobial properties. The effects of ultrasonic pretreatment (USP) time on the chemical structure, morphology, antioxidant, and antibacterial activities of lignin were studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!