Fast co-pyrolysis behaviors and synergistic effects of corn stover and polyethylene via rapid infrared heating.

Waste Manag

State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China.

Published: September 2023

Rapid infrared heating with fast heating rates and the capacity to load materials on the gram scale help investigate the co-pyrolysis behaviors, minimizing the gap of materials' pyrolysis temperature and volatile release during the co-pyrolysis. This work explored the effects of temperature and heating rate on the co-pyrolysis product s behaviors and synergistic interactions of corn stove and polyethylene. Initial increases in oil yield were followed by decreases when the heating rate rose, and when the temperature increased from 500 °C to 600 °C, the oil yield rose from 17.91 wt% to 20.58 wt% before falling to 14.75 wt% at 800 °C. High heating rate promoted the oil generation, and the maximum oil yield was at 25 °C/s with varying heating rates from 15 °C/s to 35 °C/s. The pyrolysis gas produced at 25 °C/s exhibited the highest LHV (Low heating value) and lowest CO yield, which were 17.23 MJ/nm and 39.29 vol%, respectively. The suitability of heating rate and temperature may improve the interaction between H-radicals of PE and oxygenated groups of CS to generate stable macromolecular compound and enhance oil production. GC-MS studies of the oil products demonstrated that oxygenated compounds such as furans, phenols and acids from lignocellulosic depolymerization had been converted to high molecular weight long chain alcohols (mostly C, C and C alcohols) via stronger interactions during fast infrared-heated co-pyrolysis. The alcohols increased from 32.29 % to 65.06 % as temperatures rose from 500 °C to 800 °C. Few furan heterocycles, acids and phenols were detected, suggesting that the oil presented higher quality and stronger synergistic effects. Rapid infrared heating accelerated the synergistic effects between volatile-volatile interactions during co-pyrolysis of corn stover and polyethylene, and the increases in temperature and heating rates further enhanced the release of many volatile substances and the formation of fine pores. Raman results showed char of 600 °C deposited more pure aromatic structures, the influence of temperature on aromatization was stronger than that of heating rate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2023.07.008DOI Listing

Publication Analysis

Top Keywords

heating rate
20
synergistic effects
12
rapid infrared
12
heating
12
infrared heating
12
heating rates
12
oil yield
12
co-pyrolysis behaviors
8
behaviors synergistic
8
corn stover
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!