Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Glaucoma is a chronic disorder that harms the optic nerves and causes irreversible blindness. The calculation of optic cup (OC) to optic disc (OD) ratio plays an important role in the primary screening and diagnosis of glaucoma. Thus, automatic and precise segmentations of OD and OC is highly preferable. Recently, deep neural networks demonstrate remarkable progress in the OD and OC segmentation, however, they are severely hindered in generalizing across different scanners and image resolution. In this work, we propose a novel domain adaptation-based framework to mitigate the performance degradation in OD and OC segmentation. We first devise an effective transformer-based segmentation network as a backbone to accurately segment the OD and OC regions. Then, to address the issue of domain shift, we introduce domain adaptation into the learning paradigm to encourage domain-invariant features. Since the segmentation-based domain adaptation loss is insufficient for capturing segmentation details, we further propose an auxiliary classifier to enable the discrimination on segmentation details. Exhaustive experiments on three public retinal fundus image datasets, i.e., REFUGE, Drishti-GS and RIM-ONE-r3, demonstrate our superior performance on the segmentation of OD and OC. These results suggest that our proposal has great potential to be an important component for an automated glaucoma screening system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2023.107209 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!