A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

TUNet and domain adaptation based learning for joint optic disc and cup segmentation. | LitMetric

AI Article Synopsis

  • Glaucoma damages the optic nerves and can lead to irreversible blindness, making accurate optic cup to optic disc segmentation crucial for diagnosis.
  • Recent advancements in deep neural networks have made improvements in segmenting these regions, but challenges remain in adapting to different imaging techniques and resolutions.
  • This work introduces a new framework that combines a transformer-based segmentation network with domain adaptation and an auxiliary classifier, showing promising results on multiple datasets for improving segmentation accuracy in an automated glaucoma screening system.

Article Abstract

Glaucoma is a chronic disorder that harms the optic nerves and causes irreversible blindness. The calculation of optic cup (OC) to optic disc (OD) ratio plays an important role in the primary screening and diagnosis of glaucoma. Thus, automatic and precise segmentations of OD and OC is highly preferable. Recently, deep neural networks demonstrate remarkable progress in the OD and OC segmentation, however, they are severely hindered in generalizing across different scanners and image resolution. In this work, we propose a novel domain adaptation-based framework to mitigate the performance degradation in OD and OC segmentation. We first devise an effective transformer-based segmentation network as a backbone to accurately segment the OD and OC regions. Then, to address the issue of domain shift, we introduce domain adaptation into the learning paradigm to encourage domain-invariant features. Since the segmentation-based domain adaptation loss is insufficient for capturing segmentation details, we further propose an auxiliary classifier to enable the discrimination on segmentation details. Exhaustive experiments on three public retinal fundus image datasets, i.e., REFUGE, Drishti-GS and RIM-ONE-r3, demonstrate our superior performance on the segmentation of OD and OC. These results suggest that our proposal has great potential to be an important component for an automated glaucoma screening system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2023.107209DOI Listing

Publication Analysis

Top Keywords

domain adaptation
12
optic disc
8
segmentation details
8
segmentation
7
tunet domain
4
adaptation based
4
based learning
4
learning joint
4
optic
4
joint optic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!