A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A self-assembled DNA double-crossover-based fluorescent aptasensor for highly sensitivity and selectivity in the simultaneous detection of aflatoxin M and aflatoxin B. | LitMetric

A self-assembled DNA double-crossover-based fluorescent aptasensor for highly sensitivity and selectivity in the simultaneous detection of aflatoxin M and aflatoxin B.

Talanta

Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, Henan, China; Henan Technology Innovation Center of Meat Processing and Research, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, Henan, China. Electronic address:

Published: December 2023

Realizing the simultaneous speedy detection of multiple mycotoxins in contaminated food and feed is of great practical importance in the domain of food manufacturing and security. Herein, a fluorescent aptamer sensor based on self-assembled DNA double-crossover was developed and used for effective simultaneous quantitative detection of aflatoxins M and B by fluorescence resonance energy transfer (FRET). Fluorescent dye-modified aflatoxin M and B aptamers are selected as recognition elements and signal probes, and DNA double crosses are consistently locked by the aflatoxin aptamers, which results in a "turn-off" of the fluorescent signal. In the presence of AFM and AFB, the aptamer sequences are more inclined to form Apt-AFM and Apt-AFB complexes, and the fluorescent probes are released from the DNA double-crossing platform, leading to an enhanced fluorescent signal (Cy3: 568 nm; Cy5: 660 nm). Under the optimal conditions, the signal response of the constructed fluorescent aptamer sensor showed good linearity with the logarithm of AFM and AFB concentrations, with detection limits of 6.24 pg/mL and 9.0 pg/mL, and a wide linear range of 0.01-200 ng/mL and 0.01-150 ng/mL, respectively. In addition, the effect of potential interfering substances in real samples was analyzed, and the aptasensor presented a good interference immunity. Moreover, by modifying and designing aptamer probes, the sensor can be applied to high-throughput simultaneous screening of other analytes, providing a new approach for the development of fluorescent aptamer sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2023.124908DOI Listing

Publication Analysis

Top Keywords

fluorescent aptamer
12
self-assembled dna
8
fluorescent
8
aptamer sensor
8
aflatoxin aptamers
8
fluorescent signal
8
afm afb
8
aptamer
5
dna double-crossover-based
4
double-crossover-based fluorescent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!