Hypervelocity impacts are a significant threat in low-earth orbit and in hypersonic flight applications. The earliest observable phenomena and mechanisms activated under these extreme conditions are typically obscured by a very bright flash, called the impact flash, that contains the signatures of the critical mechanisms, the impacting materials, and the impact environment. However, these signatures have been very difficult to observe because of the small length and time scales involved coupled with the high intensities associated with the flash. Here we perform experiments investigating the structure and characteristics of the impact flash generated by 3 km s spherical projectile impacts on structural metals using temporally co-registered high-resolution diagnostics. Reciprocal impact configurations, in which the projectile and target material are swapped, are used to demonstrate the coupling of early-stage mechanisms in the flash and later-stage ejection mechanisms responsible for the development of the impact crater.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10335349PMC
http://dx.doi.org/10.1093/pnasnexus/pgad214DOI Listing

Publication Analysis

Top Keywords

impact flash
12
impact
7
flash
6
contact fine
4
fine structure
4
structure impact
4
flash ejecta
4
ejecta hypervelocity
4
hypervelocity impact
4
impact hypervelocity
4

Similar Publications

Cardiac resynchronization therapy (CRT) offers significant benefits in symptom alleviation, reduction of rehospitalization rates, and overall survival of patients with heart failure (HF) with reduced ejection fraction (rEF). However, despite its proven efficacy, precisely identifying suitable CRT candidates remains a challenge, with a notable proportion of patients experiencing non-response. Accordingly, many attempts have been made to enhance patient selection, and to identify the best imaging parameters to predict the response and survival after CRT implantation.

View Article and Find Full Text PDF

Objective: The aim of the study was to assess the prevalence of postmenopausal vasomotor symptoms (VMS) and the impact of VMS and related treatment patterns among perimenopausal and postmenopausal Canadian women.

Methods: A subgroup analysis of data from a cross-sectional online survey of women aged 40-65 years conducted November 4, 2021, through January 17, 2022, evaluated the prevalence of moderate/severe VMS among postmenopausal Canadian women. The analysis also assessed survey responses from perimenopausal and postmenopausal Canadian women with moderate/severe VMS who completed the Menopause-Specific Quality of Life questionnaire, Work Productivity and Activity Impairment questionnaire, and the Patient-Reported Outcomes Measurement Information System Sleep Disturbances-Short Form 8b and answered questions about treatment patterns and attitudes toward treatments.

View Article and Find Full Text PDF

Recovered microbial community structure is known to be influenced by sample storage conditions and nucleic acid extraction methods, and the impact varies by sample type. Peat soils store a large portion of soil carbon and their microbiomes mediate climate feedbacks. Here, we tested three storage conditions and five extraction protocols on peat soils from three physicochemically distinct habitats in Stordalen Mire, Sweden, revealing significant methodological impacts on microbial (here, meaning bacteria and archaea) community structure.

View Article and Find Full Text PDF

Recently, ultra-high dose rate (> 40 Gy/s, uHDR; FLASH) radiation therapy (RT) has attracted interest, because the FLASH effect that is, while a cell-killing effect on cancer cells remains, the damage to normal tissue could be spared has been reported. This study aimed to compare the immune-related protein expression on cancer cells after γ-ray, conventionally used dose rate (Conv) carbon ion (C-ion), and uHDR C-ion. B16F10 murine melanoma and Pan02 murine pancreas cancer were irradiated with γ-ray at Osaka University and with C-ion at Osaka HIMAK.

View Article and Find Full Text PDF

This study investigates the fabrication of phase change material-poly(butylene adipate--terephthalate) (PCM-PBAT) composites through melt blending techniques, focusing on the impact of isophorone diisocyanate (IPDI) treatment on carbon nanotubes (CNTs) and (3-aminopropyl)triethoxysilane (APTES) treatment on aluminum nitride (AlN) particles. Analysis of mechanical properties highlights an enhancement in tensile strength with APTES-treated AlN particles, while dynamic mechanical analysis (DMA) reveals an increase in stiffness. Laser flash analysis (LFA) investigation demonstrates a significant increase, up to 325%, in thermal conductivity compared to PCM-PBAT composites without filler.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!