Soil organic carbon (SOC) is crucial for the quality and productivity of terrestrial ecosystems and its sequestration plays an important role in mitigating climate change. Understanding the effects of agricultural management under future climate on the SOC balance helps decision making in environmental policies. Thereby, grasslands will play a key role, since future climate change may prolong the vegetation period. We used 24 representative grassland sites in Germany to assess the SOC balance obtained from the CANDY model in relation to ten management regimes, 18 future climate change scenarios and different soil types. Simulations were conducted over a period of 110 years. For most of the selected grassland sites an increase in both air temperature and precipitation was observed in the future climate. The effect of management on the SOC balance largely exceeded the effect of soil type and climate. An increasing management intensity (i.e. three to five cuts) generally increased the SOC balance, while extensive management (i.e. two or fewer cuts) lead to SOC losses. The seasonal variation of precipitation was the most important climate metric, with increased SOC sequestration rates being observed with increasing growing season precipitation. Clay soils had the potential for both highest gains and highest losses depending on management and precipitation. Given an overall lower SOC storage potential in sands and loams, the SOC balance in those soil types varied the least in response to climate change. We conclude that fostering SOC sequestration is possible in grassland soils by increasing management intensity, which involves increased fertilizer input and field traffic. This however may stand in conflict with other policy aims, such as preserving biodiversity. Multicriterial assessments are required to estimate the nett greenhouse gas balance and other aspects associated with these management practices at a farm scale.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333473 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e17287 | DOI Listing |
Arch Environ Contam Toxicol
January 2025
Center for Fisheries, Aquaculture and Aquatic Sciences, School of Biological Sciences, Southern Illinois University, Carbondale, IL, 62901, USA.
Aquatic systems are impacted by temperature fluctuations which can alter the toxicity of pesticides. Increased temperatures related to climate change have elevated pest activity, resulting in an escalation of pesticide use. One such pesticide class, pyrethroids, has replaced the use of several banned pesticides due to its low mammalian toxicity.
View Article and Find Full Text PDFInt J Environ Health Res
January 2025
Health Sciences Institute, University for International Integration of the Afro-Brazilian Lusophony, Redenção, Ceará, Brazil.
Climate change poses a significant threat to human health. Long-term climate effects on childhood asthma hospitalizations depend on the population's geographic region. These effects in tropical drylands are not well understood.
View Article and Find Full Text PDFMol Ecol
January 2025
Department of Environmental Toxicology, University of California Davis, Davis, California, USA.
Characterising patterns of genetic diversity including evidence of local adaptation is relevant for predicting and managing species recovering from overexploitation in the face of climate change. Red abalone (Haliotis rufescens) is a species of conservation concern due to recent declines from overharvesting, disease and climate change, resulting in the closure of commercial and recreational fisheries. Using whole-genome resequencing data from 23 populations spanning their entire range (southern Oregon, USA, to Baja California, MEX) we investigated patterns of population connectivity and genotype-environment associations that would reveal local adaptation across the mosaic of coastal environments that define the California Current System (CCS).
View Article and Find Full Text PDFMol Ecol
January 2025
Department of Biology, Colorado State University, Fort Collins, Colorado, USA.
Identifying populations at highest risk from climate change is a critical component of conservation efforts. However, vulnerability assessments are usually applied at the species level, even though intraspecific variation in exposure, sensitivity and adaptive capacity play a crucial role in determining vulnerability. Genomic data can inform intraspecific vulnerability by identifying signatures of local adaptation that reflect population-level variation in sensitivity and adaptive capacity.
View Article and Find Full Text PDFAm J Bot
January 2025
Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA.
Premise: The ability of plants to adapt or acclimate to climate change is inherently linked to their interactions with symbiotic microbes, notably fungi. However, it is unclear whether fungal symbionts from different climates have different impacts on the outcome of plant-fungal interactions, especially under environmental stress.
Methods: We tested three provenances of fungal inoculum (originating from dry, moderate or wet environments) with one host plant genotype exposed to three soil moisture regimes (low, moderate and high).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!