Unlabelled: Hepatocyte nuclear factor 1α (HNF1α) plays essential roles in controlling development and metabolism; its mutations are clearly linked to the occurrence of maturity-onset diabetes of the young (MODY3) in humans. Lysine 117 (K117) to glutamic acid (E117) mutation in the HNF1α gene has been clinically associated with MODY3, but no functional data on this variant are available. Here, we addressed the role of lysine 117 in HNF1α function using a knock-in animal model and site-directed mutagenesis. HNF1α K117E homozygous mice exhibited dwarfism, hepatic dysfunction, renal Fanconi syndrome, and progressive wasting syndrome. These phenotypes were very similar to those of mice with complete HNF1α deficiency, suggesting that K117 is critical to HNF1α functions. K117E homozygotes developed diabetes in the early postnatal period. The relative deficiency of serum insulin levels and the normal response to insulin treatment in homozygous mice were markedly similar to those in the MODY3 disorder in humans. Moreover, K117E heterozygous mutant causes age-dependent glucose intolerance, which is similar to the pathogenesis of MODY3 as well. K117 mutants significantly reduced the overall transactivation and DNA binding capacity of HNF1α by disrupting dimerization. Collectively, our findings reveal a previously unappreciated role of POU domain of HNF1α in homodimerization and provide important clues for identifying the molecular basis of HNF1α-related diseases such as MODY3.

Article Highlights: HNF1α K117E homozygous mice exhibited dwarfism, hepatic dysfunction, renal Fanconi syndrome, and progressive wasting syndrome. K117E homozygotes developed diabetes in the early postnatal period. K117E heterozygous mutant causes age-dependent glucose intolerance, which is similar to the pathogenesis of maturity-onset diabetes of the young. K117 mutants significantly reduced the overall transactivation and DNA binding capacity of HNF1α by disrupting dimerization.

Download full-text PDF

Source
http://dx.doi.org/10.2337/db22-0672DOI Listing

Publication Analysis

Top Keywords

lysine 117
12
homozygous mice
12
hnf1α
10
hepatocyte nuclear
8
nuclear factor
8
factor 1α
8
maturity-onset diabetes
8
diabetes young
8
hnf1α k117e
8
k117e homozygous
8

Similar Publications

Indwelling intrauterine contraceptive devices (IUDs) have surfaces that facilitate the attachment of spp., creating a suitable environment for biofilm formation. Due to this, vulvovaginal candidiasis (VVC) is frequently linked to IUD usage, necessitating the prompt removal of these devices for effective treatment.

View Article and Find Full Text PDF

Introduction: Burns are traumatic events that can affect multiple systems beyond the skin. The rapid removal of the burn eschar is a key step in the effective treatment of severe burns, and surgical debridement is currently the standard of care for eschar removal in burn patients. However, surgical debridement is highly hemorrhagic.

View Article and Find Full Text PDF

Globally, despite the commercial and cultural importance of edible caterpillars ( and ), comprehensive information on their dietary and therapeutic benefits has not been fully explored. The study was aimed at evaluating the nutritional composition and bioactive compounds profile of two important edible caterpillars ( and ) in Africa. Our results demonstrated that and are capable of amplifying host plant protein (17 %) by 4.

View Article and Find Full Text PDF

Investigation of protein post-translational modifications with site-specifically incorporated non-canonical amino acids.

Bioorg Med Chem

January 2025

Department of Medical Oncology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Shaoxing Institute, Zhejiang University, Shaoxing 312099, China. Electronic address:

Despite the important functions of protein post-translational modifications (PTMs) in numerous cellular processes, understanding the biological roles of PTMs remains quite challenging. Here, we summarize our efforts in recent years to incorporate a variety of non-canonical amino acids (ncAAs) to study the biological functions of protein PTMs in mammalian cells, with a focus on the use of ncAA tools to probe the biological functions of various protein PTMs. We design length-tunable lipidation mimics for studying lipidation function and designing protein drugs.

View Article and Find Full Text PDF

Posttranslational modifications (PTMs) play a crucial role in modulating the structure, function, localization, and interactions of proteins, with many PTMs being localized within supersecondary structures, such as helical pairs. These modifications can significantly influence the conformation and stability of these structures. For instance, phosphorylation introduces negative charges that alter electrostatic interactions, while acetylation or methylation of lysine residues affects the stability and interactions of alpha helices or beta strands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!