Membrane morphology and its dynamic adaptation regulate many cellular functions, which are often mediated by membrane proteins. Advances in DNA nanotechnology have enabled the realization of various protein-inspired structures and functions with precise control at the nanometer level, suggesting a viable tool to artificially engineer membrane morphology. In this work, we demonstrate a DNA origami cross (DOC) structure that can be anchored onto giant unilamellar vesicles (GUVs) and subsequently polymerized into micrometer-scale reconfigurable one-dimensional (1D) chains or two-dimensional (2D) lattices. Such DNA origami-based networks can be switched between left-handed (LH) and right-handed (RH) conformations by DNA fuels and exhibit potent efficacy in remodeling the membrane curvatures of GUVs. This work sheds light on designing hierarchically assembled dynamic DNA systems for the programmable modulation of synthetic cells for useful applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.3c00750DOI Listing

Publication Analysis

Top Keywords

membrane morphology
12
morphology dynamic
8
dynamic dna
8
dna origami
8
dna
6
membrane
5
modulating lipid
4
lipid membrane
4
origami networks
4
networks membrane
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!