AI Article Synopsis

  • AI applications in medical robots are revolutionizing medicine by enabling advanced diagnostic and surgical procedures, rehabilitation assistance, and the creation of symbiotic prosthetics.
  • Key technologies like computer vision, machine learning, and precise manipulation allow for autonomous robots to perform tasks such as diagnostic imaging and remote surgeries.
  • The integration of robotics, medicine, and materials science promises enhanced patient care that is safer, more efficient, and more accessible in the future.

Article Abstract

Artificial intelligence (AI) applications in medical robots are bringing a new era to medicine. Advanced medical robots can perform diagnostic and surgical procedures, aid rehabilitation, and provide symbiotic prosthetics to replace limbs. The technology used in these devices, including computer vision, medical image analysis, haptics, navigation, precise manipulation, and machine learning (ML) , could allow autonomous robots to carry out diagnostic imaging, remote surgery, surgical subtasks, or even entire surgical procedures. Moreover, AI in rehabilitation devices and advanced prosthetics can provide individualized support, as well as improved functionality and mobility (see the figure). The combination of extraordinary advances in robotics, medicine, materials science, and computing could bring safer, more efficient, and more widely available patient care in the future. .

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.adj3312DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
medical robots
8
surgical procedures
8
intelligence meets
4
medical
4
meets medical
4
medical robotics
4
robotics artificial
4
intelligence applications
4
applications medical
4

Similar Publications

Advancing precision and personalized breast cancer treatment through multi-omics technologies.

Am J Cancer Res

December 2024

School of Basic Medical Sciences, Jiamusi University No. 258, Xuefu Street, Xiangyang District, Jiamusi 154007, Heilongjiang, China.

Breast cancer is the most common malignant tumour in women, with more than 685,000 women dying of breast cancer each year. The heterogeneity of breast cancer complicates both treatment and diagnosis. Traditional methods based on histopathology and hormone receptor status are now no longer sufficient.

View Article and Find Full Text PDF

Betel nut chewing, common in several Asian populations, is linked to increased cancer risk, including oral, esophageal, gastric, and hepatocellular carcinoma. Aspirin shows potential as a chemopreventive agent. This study investigates the association between aspirin use and cancer risk among betel nut chewers.

View Article and Find Full Text PDF

Background: Detection of atrial tachyarrhythmias (ATA) on long-term electrocardiogram (ECG) recordings is a prerequisite to reduce ATA-related adverse events. However, the burden of editing massive ECG data is not sustainable. Deep learning (DL) algorithms provide improved performances on resting ECG databases.

View Article and Find Full Text PDF

Artificial intelligence (AI) is increasingly used in many medical specialties. However, nephrology has lagged in adopting and incorporating machine learning techniques. Nephrology is well positioned to capitalize on the benefits of AI.

View Article and Find Full Text PDF

Recent advances of artificial intelligence (AI) in retinal imaging found its application in two major categories: discriminative and generative AI. For discriminative tasks, conventional convolutional neural networks (CNNs) are still major AI techniques. Vision transformers (ViT), inspired by the transformer architecture in natural language processing, has emerged as useful techniques for discriminating retinal images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!