A preemptive multi-hop contact tracing scheme that tracks not only the direct contacts of those who tested positive for COVID-19, but also secondary or tertiary contacts has been proposed and deployed in practice with some success. We propose a mathematical methodology for evaluating this preemptive contact tracing strategy that combines the contact tracing dynamics and the virus transmission mechanism in a single framework using microscopic Markov Chain approach (MMCA). We perform Monte Carlo (MC) simulations to validate our model and show that the output of our model provides a reasonable match with the result of MC simulations. Utilizing the formulation under a human contact network generated from real-world data, we show that the cost-benefit tradeoff can be significantly enhanced through an implementation of the multi-hop contact tracing as compared to traditional contact tracing. We further shed light on the mechanisms behind the effectiveness of the multi-hop testing strategy using the framework. We show that our mathematical framework allows significantly faster computation of key attributes for multi-hop contact tracing as compared to MC simulations. This in turn enables the investigation of these attributes for large contact networks, and constitutes a significant strength of our approach as the contact networks that arise in practice are typically large.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343086 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0288394 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!