Infestation with poultry red mites (PRM, Dermanyssus gallinae) causes anemia, reduced egg production, and death in serious cases, resulting in significant economic losses to the poultry industry. As a novel strategy for controlling PRMs, vaccine approaches have been focused upon and several candidate vaccine antigens against PRMs have been reported. Tropical (TFM, Ornithonyssus bursa) and northern (NFM, Ornithonyssus sylviarum) fowl mites are also hematophagous and cause poultry industry problems similar to those caused by PRM. Therefore, ideal antigens for anti-PRM vaccines are molecules that cross-react with TFMs and NFMs, producing pesticidal effects similar to those against PRMs. In this study, to investigate the potential feasibility of developing vaccines with broad efficacy across mite species, we identified and characterized cysteine proteases (CPs) of TFMs and NFMs, which were previously reported to be effective vaccine antigens of PRMs. The open reading frames of CPs from TFMs and NFMs had the same sequences, which was 73.0% similar to that of PRMs. Phylogenetic analysis revealed that the CPs of TFMs and NFMs clustered in the same clade as CPs of PRMs. To assess protein functionality, we generated recombinant peptidase domains of CPs (rCP-PDs), revealing all rCP-PDs showed CP-like activities. Importantly, the plasma obtained from chickens immunized with each rCP-PD cross-reacted with rCP-PDs of different mites. Finally, all immune plasma of rCP-PDs reduced the survival rate of PRMs, even when the plasma was collected from chickens immunized with rCP-PDs derived from TFM and NFM. Therefore, CP antigen is a promising, broadly efficacious vaccine candidate against different avian mites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343161 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0288565 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!