Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Starvation therapy has been considered a promising strategy in cancer treatment for altering the tumor microenvironment (TME) and causing a cascade of therapeutic effects. However, it is still highly challenging to establish a therapeutic strategy for precisely and potently depriving tumoral nutrition. In this study, a glucose oxidase (GOx) and thrombin-incorporated erythrocyte vesicle (EV) with cyclic (Arg-Gly-Asp) (cRGD) peptide modification, denoted as EV@RGT, were synthesized for precisely depriving tumoral nutrition and sequentially inducing second near-infrared region (NIR-II) photothermal therapy (PTT) and immune activation. The EV@RGT could specifically accumulate at the tumor site and release the enzymes at the acidic TME. The combination of GOx and thrombin exhausts tumoral glucose and blocks the nutrition supply at the same time, resulting in severe energy deficiency and reactive oxygen species (ROS) enrichment within tumor cells. Subsequently, the abundant clotted erythrocytes in tumor vessels present outstanding localized NIR-II PTT for cancer eradication owing to the hemoglobin. Furthermore, the abundant ROS generated by enhanced starvation therapy repolarizes resident macrophages into the antitumor M1 phenotype via a DNA damage-induced STING/NF-κB pathway, ultimately contributing to tumor elimination. Consequently, the engineered EV@RGT demonstrates powerful antitumor efficiency based on precise nutrition deprivation, sequential NIR-II PTT, and immune activation effect. This work provides an effective strategy for the antitumor application of enzyme-based reinforced starvation therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.3c00345 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!