Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_session5392got8n8qs06466jiulr9d313pmps3): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
IEEE Trans Med Imaging
Published: January 2024
Deep neural networks typically require accurate and a large number of annotations to achieve outstanding performance in medical image segmentation. One-shot and weakly-supervised learning are promising research directions that reduce labeling effort by learning a new class from only one annotated image and using coarse labels instead, respectively. In this work, we present an innovative framework for 3D medical image segmentation with one-shot and weakly-supervised settings. Firstly a propagation-reconstruction network is proposed to propagate scribbles from one annotated volume to unlabeled 3D images based on the assumption that anatomical patterns in different human bodies are similar. Then a multi-level similarity denoising module is designed to refine the scribbles based on embeddings from anatomical- to pixel-level. After expanding the scribbles to pseudo masks, we observe the miss-classified voxels mainly occur at the border region and propose to extract self-support prototypes for the specific refinement. Based on these weakly-supervised segmentation results, we further train a segmentation model for the new class with the noisy label training strategy. Experiments on three CT and one MRI datasets show the proposed method obtains significant improvement over the state-of-the-art methods and performs robustly even under severe class imbalance and low contrast. Code is publicly available at https://github.com/LWHYC/OneShot_WeaklySeg.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TMI.2023.3294975 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.