A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An Autonomous Continuous Bladder Irrigation System. | LitMetric

AI Article Synopsis

  • * The objective was to develop an autonomous CBI system that reduces disruptions, monitors outflow, and alerts healthcare providers about critical events, built using 3D printing and microcontrollers.
  • * The prototype successfully simulated CBI with sudden bleeding, effectively managing irrigation rates based on outflow, detecting issues like catheter blockages, and minimizing nurses' workload, with a clinical trial planned for further validation.

Article Abstract

Continuous bladder irrigation (CBI) is used in a variety of clinical settings, including post-transurethral surgery and the emergency department. Currently, CBI administration relies on nurses to diligently monitor and switch irrigation bags, as well as titrate the inflow rate based on effluent color. Inappropriate administration can result in discomfort to patients, clot urinary retention, repeat injury to the pathologic or surgical site, extended hospital stays, and even operative management. Our objective was to create an autonomous CBI system that decreases the incidence of disrupted irrigation flow and monitors the outflow to alert clinicians of critical events. 3D printing and off-the-shelf microcontrollers were used to design a device to fit the needs identified by stakeholders at our institution. An model of the bladder was created to test our design. The mechanical, electrical, and software subsystems were adjusted accordingly to meet our design requirements. Our CBI model was able to simulate routine CBI administration with sudden bleeding. Bovine blood was used to simulate the bleeding events. A device was created that met identified stakeholder needs. Accurate detection of critical bleeding events, catheter blockage, and empty irrigation bags were achieved. The device responds to bleeding appropriately by increasing the irrigation rate. When the catheter is blocked, it stops the irrigation and alerts the nurse. Our system accurately titrated the irrigation rate to match a set outflow blood level parameter, conserving irrigation and minimizing nursing workload. Continuous monitoring of CBI effluent was recorded. We anticipate our device will decrease the cognitive load on nurses in busy clinical settings and improve workflow. Moreover, the detection of critical events will likely decrease patient morbidity. Continuous monitoring of the CBI outflow may prove to be a new clinical decision-making tool for ongoing hematuria. Clinical trial is pending.

Download full-text PDF

Source
http://dx.doi.org/10.1089/end.2023.0177DOI Listing

Publication Analysis

Top Keywords

irrigation
9
continuous bladder
8
bladder irrigation
8
clinical settings
8
cbi administration
8
irrigation bags
8
critical events
8
bleeding events
8
detection critical
8
irrigation rate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!