Certain mutations in the unc-105 II gene of the nematode Caenorhabditis elegans have dominant effects on morphology and behavior: animals become small, severely hypercontracted and paralyzed. These unc-105 mutants revert both spontaneously and with mutagens at high frequencies to a wild-type phenotype. Most of the reversion events are intragenic, apparently because the null (loss-of-function) phenotype of unc-105 is wild type. One revertant defined an extragenic suppressor locus, sup-20 X. Such suppressor alleles of sup-20 are rare, and the apparent null phenotype of sup-20 is embryonic lethality. By constructing animals genetically mosaic for sup-20, we have shown that the primary effect of sup-20 is in muscle cells. In addition to mutations in sup-20, other mutations causing muscle defects, such as unc-54 and unc-22 mutations, suppress the hypercontracted phenotype of unc-105. The ease of identifying nonhypercontracted revertants of unc-105 mutants greatly facilitates the isolation of new mutants defective in muscle structure and function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1202916PMC
http://dx.doi.org/10.1093/genetics/113.4.853DOI Listing

Publication Analysis

Top Keywords

mutations affect
8
affect muscle
8
unc-105 mutants
8
phenotype unc-105
8
mutations
6
sup-20
6
muscle
5
unc-105
5
elegans unc-105
4
unc-105 mutations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!