Zirconia nanoparticles are used in various industrial and biomedical applications such as dental implants, thermal barrier sprays, and fuel cells. The interaction of nanoparticles with the environment and humans is inevitable. Despite the enormous application potential of these nanoparticles, there are still some gaps in the literature regarding potential toxicological mechanisms and the genotoxicity of zirconia nanoparticles. The lung is one of the main exposure routes to nanomaterials; therefore, the present study was designed to determine the genotoxic and mutagenic effect of zirconia NPs in V-79 lung cells. Zirconia nanoparticles showed significant internalization in cells at 100 μg/mL and 150 μg/mL concentrations. Zirconia nanoparticles showed low cytotoxicity and were found to generate ROS in V-79 cells. In alkaline comet assay, zirconia nanoparticles (10 μg/mL, 50 μg/mL, and 100 μg/mL) exposed cells exhibited significant DNA strand breaks, while the neutral comet assay, which was used for double-strand break assessment, only revealed significant damage at 100 μg/mL. Chromosomal aberration induced by zirconia nanoparticles mainly resulted in the generation of gaps, few fragments, and breaks which signifies the low clastogenic activity of these nanoparticles in the V-79 cell line. In MN assay, zirconia nanoparticles resulted in no significant micronuclei induction at any given concentration. In the HPRT mutation assay, the particle shows a dose-dependent increase in the mutant frequency. It is evident from the result that zirconia nanoparticles cause dose-dependent cytotoxicity and genotoxicity, but still, more studies are needed to evaluate the clastogenic potential and the possible mechanism involved.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12011-023-03739-4DOI Listing

Publication Analysis

Top Keywords

zirconia nanoparticles
36
nanoparticles
12
zirconia
10
v-79 cells
8
cells zirconia
8
comet assay
8
assay zirconia
8
cells
6
vitro effects
4
effects zirconia
4

Similar Publications

Artificial N fixation via the electrocatalytic nitrogen (N) reduction reaction (NRR) has been recently promoted as a rational route toward reducing energy consumption and CO emission as compared with the traditional Haber-Bosch process. Nevertheless, optimizing NRR relies on developing highly efficient electrocatalysts. Herein, we report on the reliable and reproducible synthesis of two promising electrocatalysts in either the presence or absence of Ketjenblack (KB), namely, ZrO-ZrN@KB and ZrO-ZrN systems, synthesized through the nitriding of Zr.

View Article and Find Full Text PDF

This study determined process conditions under which polystyrene (CPS) and zirconia (YSZ) beads cause similar breakage kinetics and temperature rise during manufacturing of drug nanosuspensions via wet bead milling and explored relative advantages of CPS beads, particularly for stress-sensitive compounds. Besides temperature and particle size measurements, a microhydrodynamic-based kinetic model simulated the conditions for CPS to achieve breakage rates equivalent to those of YSZ. A power law correlation was applied to find conditions conducive to temperature equivalency.

View Article and Find Full Text PDF

Margin quality, homogeneity, and internal porosity assessment of experimental short fiber-reinforced CAD/CAM composite.

J Mech Behav Biomed Mater

December 2024

Department of Biomaterials Science and Turku Clinical Biomaterial Center -TCBC, Institute of Dentistry, University of Turku, Finland; Research Development and Production Department, Stick Tech Ltd-Member of GC Group, Turku, Finland.

Objectives: The aim of this study was to evaluate the margin quality of anterior crowns made of experimental short fiber-reinforced CAD/CAM composite (SFRC CAD) block before and after cyclic fatigue aging. Moreover, to investigate the microstructure, homogeneity, and porosity of the SFRC CAD compared with other commercial CAD/CAM materials.

Methods: 40 anterior crowns were milled from five CAD/CAM blocks divided into five groups (n = 8/group).

View Article and Find Full Text PDF

Research for novel compounds that may block bacterial development has continued and prompted by antibiotic-resistant bacteria. The expenses of community for health care as a result of antibiotic resistance has indeed been remarkable during the last decades and demand immediate of medical attention. Consequently, this research presents the antibacterial effect of genuine metal oxide nanoparticles against () and that have been isolated from urinary tract infection patients.

View Article and Find Full Text PDF

Mineralized Nanofiber Substrates Enabling High-Performance Dually Charged Nanofiltration Membranes with Enhanced Permeability.

ACS Appl Mater Interfaces

December 2024

Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China.

Nanofiltration membranes (NFMs) with superior permeability and high rejection of both divalent anions and cations are highly desirable to meet the increasing separation demands of complex systems. Herein, we propose a three-in-one strategy to develop a state-of-the-art dually charged thin-film composite (TFC) nanofiltration membrane consisting of a positively charged electrospun nanofiber substrate (NFS) with surface mineralization and a negatively charged polyamide (PA) selective layer prepared by interfacial polymerization (IP). The highly hydrophilic mineralized nanofiber substrate not only effectively reduces the thickness of the PA selective layer but also crumples its structures by the abundant zirconia nanoparticles on the substrate surface, resulting in excellent water flux (15.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!