AI Article Synopsis

  • Bone tissue engineering aims to create a 3D scaffold that mimics natural bone but faces challenges due to the 2D nature of electrospun fibers and their small pore sizes.
  • The study involved co-culturing human bone marrow stem cells and endothelial cells in a perfusion bioreactor with improved polycaprolactone scaffolds to promote both bone and blood vessel growth under different flow conditions.
  • Results showed higher osteogenesis and calcium content in scaffolds under dynamic vertical flow compared to other conditions, indicating the effectiveness of the bioreactor setup for bone tissue engineering.

Article Abstract

Purpose: Bone tissue engineering aims to create a three-dimensional, matured, angiogenic scaffold with a suitable thickness that resembles a natural bone matrix. On the other hand, electrospun fibers, which researchers have considered due to their good biomimetic properties, are considered 2D structures. Due to the highly interwoven network and small pore size, achieving the desired thickness for bone lesions has always been challenging. In bone tissue engineering, bioreactors are crucial for achieving initial tissue maturity and introducing certain signals as flow parameters for differentiation.

Methods: In the present study, Human bone marrow mesenchymal stem cells (hBMSCs) and human umbilical vein endothelial cells (HUVECs) were co-cultured in a perfusion bioreactor on treated (improved pore size by gelatin sacrification and subsequent ultrasonication) 5-layer polycaprolactone-nano hydroxyapatite-nano zinc oxide (T-PHZ) scaffolds to investigate osteogenesis and angiogenesis simultaneously. The flow parameters and stresses on the cells were studied using two patterns of parallel and vertical scaffolds relative to the flow of the culture medium. In dynamic vertical flow (DVF), the culture medium flows perpendicular to the scaffolds, and in dynamic parallel flow (DPF), the culture medium flows parallel to the scaffolds. In all evaluations, static samples (S) served as the control group.

Results: Live/dead, and MTT assays demonstrated the biocompatibility of the 5-layer scaffolds and the suitability of the bioreactor's functional conditions. ALP activity, EDAX analysis, and calcium content measurements exhibited greater osteogenesis for T-PHZ scaffolds in DVF conditions. Calcium content increased by a factor of 2.2, 1.8, and 1.6 during days 7 to 14 of culture under DVF, DPF and S conditions, respectively. After 21 days of co-culturing, an immunohistochemistry (IHC) test was performed to investigate angiogenesis and osteogenesis. Five antibodies were investigated in DVF, CD31, VEGFA, and VEGFR2 for angiogenesis, osteocalcin, and RUNX2 for osteogenesis. Compressive stress applied in DVF mode has increased osteogenic activity compared to DPF.

Conclusion: The results indicated the development of ideal systems for osteogenesis and angiogenesis on the treated multilayer electrospun scaffolds in the perfusion bioreactor.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10529-023-03411-wDOI Listing

Publication Analysis

Top Keywords

osteogenesis angiogenesis
12
culture medium
12
scaffolds
8
electrospun scaffolds
8
bone tissue
8
tissue engineering
8
pore size
8
flow parameters
8
perfusion bioreactor
8
t-phz scaffolds
8

Similar Publications

Masquelet technique combined with concentrated growth factors for the reconstruction of rabbit mandibular marginal bone defect.

Clin Oral Investig

January 2025

Fujian Key Laboratory of Oral Diseases & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, 350002, China.

Objective: Both the Masquelet technique (MT) and concentrated growth factors (CGF) reduce early graft loss and improve bone regeneration. This study aims to explore the efficacy of combining MT with CGF for mandibular defect repair by characterizing the induced membrane and assessing in vivo osteogenesis.

Materials And Methods: Three experimental groups were compared: negative control (NC), MT, and Masquelet combined with CGF (MTC).

View Article and Find Full Text PDF

Chemerin, an adipocyte-secreted adipokine, can regulate bone resorption and bone formation and is a promising therapy for postmenopausal osteoporosis. However, the effect of endogenous chemerin on intraosseous vascular remodeling in postmenopausal osteoporosis remains unclear. In this study, we investigated the effect of chemerin on osteogenesis formation and intraosseous vascular remodeling in ovariectomized Rarres2 knockout (Rarres2) mice.

View Article and Find Full Text PDF

Aims: Bone marrow mononuclear cells (BM-MNCs) are a rich source of hematopoietic stem cells that have been widely used in experimental therapies for patients with various diseases, including fractures.Activation of angiogenesis is believed to be one of the major modes of action of BM-MNCs; however, the essential mechanism by which BM-MNCs activate angiogenesis remains elusive. This study aimed to demonstrate that BM-MNCs promote bone healing by enhancing angiogenesis through direct cell-to-cell interactions via gap junctions, in addition to a previously reported method.

View Article and Find Full Text PDF

Thermoresponsive dual-network chitosan-based hydrogels with demineralized bone matrix for controlled release of rhBMP9 in the treatment of femoral head osteonecrosis.

Carbohydr Polym

March 2025

Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China. Electronic address:

In an effort to mitigate or reverse the pathological progression of early-stage osteonecrosis of the femoral head (ONFH), this study employed a promising strategy that involves the sustained delivery of osteogenic factors to augment core decompression, facilitated by the use of composite hydrogels. Specifically, a hydrogel was synthesized by blending chitosan, Pluronic F-127, and tripolyphosphate, utilizing both ionic bonding and copolymer micelle cross-linking techniques. This hydrogel demonstrated exceptional biocompatibility, temperature responsiveness, pH-dependent biodegradation, and controlled release properties.

View Article and Find Full Text PDF

Researchers in the field of regenerative medicine have consistently focused on the biomimetic design of engineered bone materials on the basis of the microstructure of natural bone tissue. Additionally, the effects of the micromorphological characteristics of these materials on angiogenesis have garnered increasing attention. , the orientation and diameter of scaffold materials can exert different effects on osteogenesis and vascularisation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!