Development of binary MOF-on-MOF heterostructures is a research hotspot in MOFs chemistry due to the advantages elicited by a closely connected interface, which may endow more abundant functionality and even broader applications in interface chemistry. A MOF-on-MOF heterostructure was constructed by growth of MIL-88B on the outer surface of UiO-66. The resultant MIL-88B@UiO-66 produced had an interesting flower-like morphology composed of MIL-88B (petal) on tetrahedral UiO-66 (core). The MIL-88B@UiO-66 heterostructure showed adsorption and Fenton-like oxidation abilities, with distinctly improved structural stability in aqueous solution compared with that of single MIL-88B. Methylene blue (MB) was selected as the target molecule to evaluate the adsorption and Fenton-like oxidation activities. The efficiency of total removal of MB was studied systematically under various operating conditions and the influencing factors were optimized. The kinetics of adsorption and catalytic oxidation were simulated to explore the interactions between MB and MIL-88B@UiO-66. The mechanisms of enhanced adsorption and Fenton-like oxidation were suggested. The cyclic removal performance and structural stability of MIL-88B@UiO-66 were also determined.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3dt01413d | DOI Listing |
Angew Chem Int Ed Engl
January 2025
East China University of Science and Technology, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, 130 Meilong Road, 200237, Shanghai, CHINA.
Nanoconfinement at the interface of heterogeneous Fenton-like catalysts offers promising avenues for advancing oxidation processes in water purification. Herein, we introduce a template-free strategy for synthesizing nanoconfined catalysts from municipal sludge (S-NCCs), specifically engineered to optimize reactive oxygen species (ROS) generation and utilization for rapid pollutant degradation. Using selective hydrofluoric acid corrosion, we create an architecture that confines atomically dispersed Fe centers within a micro-mesoporous carbon matrix in situ.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Institute of Soil and Environmental Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, 46300, Pakistan.
Although the use of biochar as an adsorbent for the removal of various pollutants from wastewater is well established, the use of biochar/modified biochar for the scavenging of antibiotics from aqueous media in the Fenton-like system receives less attention. The highest kasugamycin (KSM) adsorption capacity (5.0 mg g) was obtained from the pristine biochar at the lowest initial pH of 3 in Fenton-like system.
View Article and Find Full Text PDFSmall
January 2025
School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China.
Chlorophenols are difficult to degrade and mineralize by traditional advanced oxidation processes due to the strong electronegativity of chlorine. Here, a dual-site atomically dispersed catalyst (FeMoNC) is reported, which Fe/Mo supported on mesoporous nitrogen-doped carbon is prepared through high-temperature migration. The FeMoNC exhibits a high dechlorination rate of 93.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China. Electronic address:
Ofloxacin (OFX), commonly employed in the treatment of infectious diseases, is frequently detected in aquatic environments and poses potential ecological risks. UV/HO oxidation has been recognized as an efficient approach for removing antibiotics. In this study, Cu-doped waste-tire carbon was prepared and used as a UV/HO catalyst for the degradation of OFX.
View Article and Find Full Text PDFEur J Inorg Chem
May 2024
Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
Lytic polysaccharide monooxygenases (LPMOs) are Cu-dependent metalloenzymes that catalyze the hydroxylation of strong C-H bonds in polysaccharides using O or HO as oxidants (monooxygenase/peroxygenase). In the absence of C-H substrate, LPMOs reduce O to HO (oxidase) and HO to HO (peroxidase) using proton/electron donors. This rich oxidative reactivity is promoted by a mononuclear Cu center in which some of the amino acid residues surrounding the metal might can accept and donate protons and/or electrons during O and HO reduction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!