Microbially Induced Calcium Carbonate Precipitation by : a Case Study in Optimizing Biological CaCO Precipitation.

Appl Environ Microbiol

Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA.

Published: August 2023

Current production of traditional concrete requires enormous energy investment that accounts for approximately 5 to 8% of the world's annual CO production. Biocement is a building material that is already in industrial use and has the potential to rival traditional concrete as a more convenient and more environmentally friendly alternative. Biocement relies on biological structures (enzymes, cells, and/or cellular superstructures) to mineralize and bind particles in aggregate materials (e.g., sand and soil particles). Sporosarcina pasteurii is a workhorse organism for biocementation, but most research to date has focused on as a building material rather than a biological system. In this review, we synthesize available materials science, microbiology, biochemistry, and cell biology evidence regarding biological CaCO precipitation and the role of microbes in microbially induced calcium carbonate precipitation (MICP) with a focus on . Based on the available information, we provide a model that describes the molecular and cellular processes involved in converting feedstock material (urea and Ca) into cement. The model provides a foundational framework that we use to highlight particular targets for researchers as they proceed into optimizing the biology of MICP for biocement production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10467343PMC
http://dx.doi.org/10.1128/aem.01794-22DOI Listing

Publication Analysis

Top Keywords

microbially induced
8
induced calcium
8
calcium carbonate
8
carbonate precipitation
8
biological caco
8
caco precipitation
8
traditional concrete
8
building material
8
precipitation
4
precipitation case
4

Similar Publications

Backgrounds: Memory and emotion are especially vulnerable to psychiatric disorders such as post-traumatic stress disorder (PTSD), which is linked to disruptions in serotonin (5-HT) metabolism. Over 90% of the 5-HT precursor tryptophan (Trp) is metabolized via the Trp-kynurenine (KYN) metabolic pathway, which generates a variety of bioactive molecules. Dysregulation of KYN metabolism, particularly low levels of kynurenic acid (KYNA), appears to be linked to neuropsychiatric disorders.

View Article and Find Full Text PDF

The use of biological control agents is one of the best strategies available to combat the plant diseases in an ecofriendly manner. Biocontrol bacteria capable of providing beneficial effect in crop plant growth and health, have been developed for several decades. It highlights the need for a deeper understanding of the colonization mechanisms employed by biocontrol bacteria to enhance their efficacy in plant pathogen control.

View Article and Find Full Text PDF

The increasing challenges posed by plant viral diseases demand innovative and sustainable management strategies to minimize agricultural losses. Exogenous double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) represents a transformative approach to combat plant viral pathogens without the need for genetic transformation. This review explores the mechanisms underlying dsRNA-induced RNAi, highlighting its ability to silence specific viral genes through small interfering RNAs (siRNAs).

View Article and Find Full Text PDF

Background/objectives: Ulcerative colitis (UC) is a chronic and easily recurrent inflammatory bowel disease. The gut microbiota and plasma metabolites play pivotal roles in the development and progression of UC. Therefore, therapeutic strategies targeting the intestinal flora or plasma metabolites offer promising avenues for the treatment of UC.

View Article and Find Full Text PDF

Fermented Against Atopic Dermatitis Through AKT/mTOR and Jun Pathways.

Pharmaceuticals (Basel)

December 2024

Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.

Atopic dermatitis (AD) is a chronic inflammatory skin disorder that has attracted global attention, and alkaloids from have been shown to have anti-inflammatory activity. Fermentation has been used for the structural modification of natural compounds to improve bioavailability and activity, but the AD therapeutic efficacy and mechanism of the fermented (FPN) are still unclear. The potential targets of FPN for AD were preliminarily screened using network pharmacology, and then PCR and WB were used to prove the therapeutic effect of FPN in AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!