Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessionv97n2vc71rdelg26iuot96f92l1cecog): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
ACS Appl Mater Interfaces
Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
Published: July 2023
Silver nanowire (AgNW) is recognized as a critical material for developing the next generation of transparent conductive films (TCFs); however, poor stability remains a major issue. Herein, we demonstrate a stable AgNW TCF passivated by a metal-organic framework (MOF) via a facile solution process. The MOF is chemically bonded to the surface of the AgNWs as a chemical inhibitor, which contributes to passivating highly active sites and providing chemical protection, leading to enhanced resistance to corrosive molecules and thereby offering exceptional stability under an ambient atmosphere. Simultaneously, the binding interaction with the MOF anchors silver atoms at the surface of the nanowires, suppressing their diffusion at high temperatures and allowing the AgNW film to maintain excellent conductivity up to 300 °C. Additionally, the hydrogen bonding between the MOF and the substrate, along with the tight connection of the MOF with AgNWs, improves the welding between the nanowires, enhancing the conductivity of the AgNW film at mild conditions while offering good flexibility and adhesion properties. Furthermore, the OLED device integrating the MOF-modified AgNW electrode shows comparable performance to an indium tin oxide-based device, verifying its huge potential for applications in optoelectronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c06450 | DOI Listing |
Polymers (Basel)
February 2025
College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
Wearable, non-invasive sweat sensors capable of continuously monitoring the pH of sweat, which is a key indicator related to metabolism and homeostasis level, are highly desirable for personal health management. However, ensuring the stability and accuracy of these sensors can be challenging when the body is in motion. In this work, we prepared a stretchable nanofibrous membrane-based electrochemical pH-sensing electrode by embedding carbon nanotubes (MWCNT) and silver nanowires (AgNWs) into an elastic electrospun nanofibrous membrane, followed by polyaniline electrodeposition.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2025
The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
Here, we demonstrate through AFM imaging and CD spectroscopy that the binding of silver ions (Ag) to poly(dGdC), a double-stranded (ds) DNA composed of two identical repeating strands, at a stoichiometry of one Ag per GC base pair induces a one-base shift of one strand relative to the other. This results in a ds nucleic acid-Ag conjugate consisting of alternating CC and GG base pairs coordinated by silver ions. The proposed organization of the conjugate is supported by the results of our Quantum Mechanical (QM) and Molecular Mechanics (MMs) calculations.
View Article and Find Full Text PDFMicromachines (Basel)
February 2025
Instituto de Sistemas Optoelectrónicos y Microtecnología (ISOM-UPM), E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Av. Complutense 30, 28040 Madrid, Spain.
Indium tin oxide (ITO) is a commonly used material for transparent conductive electrodes (TCE) in optoelectronic applications. On the other hand, graphene has superior electrical conductivity and exceptional mechanical flexibility, which makes it a promising candidate as a TCE material. This work proposes a CVD graphene/ITO hybrid electrode enhanced by doping with silver nanowires (Ag-NWs).
View Article and Find Full Text PDFACS Sens
March 2025
Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China.
Growing imperative for intelligent transformation of electro-ionic actuators in soft robotics has necessitated self-perception for accurately mapping their nonlinear dynamic responses. Despite the promise of integrating crack-based strain sensors for such a purpose, significant challenges remain in controlling crack propagation to prevent the induction of through-cracks, resulting in lower sensitivity, linearity, and poor detection limits. Herein, we propose a hierarchical crack-based synergistic enhancement structure by incorporating conductive poly(pyrrole)-coated polystyrene nanospheres and TiCT MXene to induce cross-long sensing cracks via point-to-plane contacts, along with silver nanowires for positively engineering networked microcracks for linearity tuning.
View Article and Find Full Text PDFSmall
March 2025
State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Shuangqing Road 30, Haidian District, Beijing, 100084, P. R. China.
Silver-telluride-based nanowires (STNWs) are promising thermoelectric (TE) materials for room temperature (RT) applications, can be utilized to fabricate flexible TE composites or inks to facilitate TE conversion in various situations. However, current research on doping design and morphology optimization of STNWs is still limited. Such strategies are expected to enhance the TE performance and flexibility, thereby improving the compatibility of STNWs for TE applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.