The chromium adsorption behavior from aqueous solution by the amphoteric Janus nitrogen-doped carbon quantum dots (AJ-N-CQDs) was investigated. The pseudo-first-order and the second-order adsorption kinetics models were employed to analyze the experimental data; the second-order adsorption kinetics model presented a better correlation to the experimental data, suggesting a chemisorptions process. The values obtained in the pseudo-first-order are still suitable for describing the Kinetics of Cr(VI) sorption. These values elucidate the surface processes involving chemisorption and physisorption in the adsorption of Cr(VI) by AJ-N-CQDs. The R of the Boyd model gave a better fit to the adsorption data of AJ-N-CQDs (i.e., external diffusion), which means the surface processes involving external Cr(VI) adsorption by AJ-N-CQDs. The higher value of α may be due to the greater surface area of the AJ-N-CQDs for the immediate adsorption of Cr(VI) from the aqueous solution. AJ-N-CQDs have fluorescence spectra before and after Cr(VI) adsorption, indicating they are promising for chemical sensor applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10338475PMC
http://dx.doi.org/10.1038/s41598-023-37894-4DOI Listing

Publication Analysis

Top Keywords

aqueous solution
12
adsorption
9
carbon quantum
8
quantum dots
8
chromium adsorption
8
second-order adsorption
8
adsorption kinetics
8
experimental data
8
surface processes
8
processes involving
8

Similar Publications

Laser-induced breakdown spectroscopy (LIBS) is a rapidly evolving in-situ multi-element analysis technique that has significantly advanced the field of liquid analysis. This study employs a femtosecond laser for quantitative analysis of heavy metals in flowing liquids, exploring its detection sensitivity and accuracy. Femtosecond pulsed laser excitation of water in a dynamic environment generates plasma while effectively preventing liquid splashing.

View Article and Find Full Text PDF

Sensitive fluorescence turn-on sensing of hydroxyl radical and glucose based on the oxidative degradation of reductive organic cage.

Talanta

January 2025

College of Chemistry and Materials Science, Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, Hengyang Normal University, Hengyang, 421001, China. Electronic address:

The accurate and sensitive quantification of hydroxyl radical (·OH) and glucose is necessary for disease diagnosis and health guidance, but still challenging owing to the low concentration of ·OH and poor water solubility of fluorescent probes. In addition, fluorescent probes may cause secondary pollution to the environment. Here an organic cage was reported as a sensitive fluorescent probe for ·OH and glucose in aqueous solution without serious secondary pollution.

View Article and Find Full Text PDF

Due to the industry's rapid growth, the presence of organic pollutants, especially antibiotics, in water and wastewater resources is the main concern for wildlife and human health. Therefore, these days, a significant challenge is developing an efficient, sustainable, and eco-friendly photocatalyst. Natural biological models have numerous advantages compared to artificial model materials.

View Article and Find Full Text PDF

Aqueous Solubility of Sodium and Chloride Salts of Glycine─"Uncommon" Common-Ion Effects of Self-Titrating Solids.

Mol Pharm

January 2025

Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States.

Although glycine is the simplest of the amino acids, its solution and solid-state properties are far from straightforward. The aqueous solubility of glycine plays an important role in various applications, including nutrition, food products, biodegradable plastics, and drug development. There is evidence that glycine in subsaturated pH 3-8 solutions forms a dimer, as suggested by several techniques.

View Article and Find Full Text PDF

In this research, the degradation of Congo red (CR) dye, as an organic pollutant in water, was investigated using microwave-induced reaction technology. This technology requires a microwave-absorbing catalyst and the 2D TiCT MXene was synthesized for that purpose. The synthesized catalyst was characterized using XRD, SEM, TEM, EDX, BET, and XPS techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!