The aim of this study was to analyze the pollution degree and causes of soil and agricultural products in high geological background areas and to provide a basis for the safe production of agricultural products and the risk control of soil heavy metals. A total of 36 sets of soil-corn collaborative samples were collected in the farming area of Baolong Town, Wushan County, Chongqing City; the contents of heavy metals (Cd, Hg, Pb, As, and Cr) and soil pH in the soil-maize were analyzed, the pollution degree of heavy metals in the soil-maize was evaluated using the Nemerow comprehensive pollution index method () and comprehensive quality impact index (IICQ). The sources of heavy metals in the soil and the influencing factors of heavy metal excess in corn were also analyzed. The results showed that the average value of soil heavy metal content in the study area was higher than the national and Chongqing soil background values, and the soil heavy metal enrichment effect was obvious. Cd was the main factor of soil-maize exceeding the standard, and the overall exceeding rates of soil and corn Cd were 91.67% and 30.55%, respectively. The evaluation results of the Nemerow comprehensive pollution index showed that the soil was dominated by heavy pollution, accounting for 63.89%. The soil-maize comprehensive quality impact index was dominated by moderate and severe pollution, accounting for 44.44% and 47.22%, respectively. From the perspective of the spatial distribution of heavy metal pollution, corn and soil pollution areas were inconsistent. Soil heavy metal pollution was mainly affected by the Permian and Triassic strata and was related to the secondary enrichment of black rock series and limestone areas. The Cd content of maize was mainly affected by soil pH, and maize was relatively safe under alkaline conditions. It is suggested that the soil in the study area should be divided into risk zones according to the stratum distribution, and the planting structure should be adjusted in the high-risk areas. For the low- and medium-risk areas, it is recommended to strengthen the monitoring of agricultural inputs and reduce the input of heavy metals in the soil. Additionally, we recommend carrying out agronomic regulation in acidic soil areas to improve soil acidification, plant corn varieties with low accumulation of heavy metals, and reduce the risk of agricultural products exceeding the standard.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.202208050 | DOI Listing |
Biol Trace Elem Res
January 2025
Department of Fisheries, Faculty of Marine Sciences and Fisheries, University of Chittagong, Chittagong, 4331, Bangladesh.
The Southeastern part of the Bay of Bengal is increasingly threatened by heavy metal pollution, posing significant risks to both aquatic life and human health. In this context, the contamination levels of six heavy metals-Cadmium (Cd), Lead (Pb), Zinc (Zn), Copper (Cu), Manganese (Mn), and Iron (Fe)-were assessed in the soft tissues of Green mussels (Perna viridis) from five key sites: Matamuhuri, Moheshkhali, Bakhkhali, Naf, and St. Martin.
View Article and Find Full Text PDFJ Bacteriol
December 2024
School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, USA.
Unlabelled: Ubiquitous in nature, biofilms provide stability in a fluctuating environment and provide protection from stressors. Biofilms formed in industrial processes are exceedingly problematic and costly. While biofilms of sulfate-reducing bacteria in the environment are often beneficial because of their capacity to remove toxic metals from water, in industrial pipelines, these biofilms cause a major economic impact due to their involvement in metal and concrete corrosion.
View Article and Find Full Text PDFInt J Phytoremediation
January 2025
Institute of Soil & Environmental Sciences, University of Agriculture, Pakistan.
Due to a lack of high-quality water, farmers have been compelled to use sewage water for irrigation, contaminating agricultural soils with multiple heavy metals. For the remediation of contaminated soil, plant growth-promoting rhizobacteria (PGPR), pressmud (PM), and iron (III) oxide were used to improve the growth and phytostabilization potential of chickpea grown in contaminated soil. Contaminated soil was collected from a nearby field, receiving sewage and factory water over the last 60 years.
View Article and Find Full Text PDFTheranostics
January 2025
School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, China.
Copper plays an important role in the regulation of PD-L1, suggesting that reducing copper levels within tumors may enhance anti-cancer immunotherapy. Tumor microenvironment responsive copper nanodeprivator (TMECN) was developed for enhancing immunotherapy of tumor via the cross-link of mercaptopolyglycol bipyridine and dimercaptosuccinic acid modifying FePt nanoalloy using the disulfide bond. Upon entering tumor cells, the disulfide bond in TMECN is cleaved by the overexpressed glutathione, exposing abundance of sulfhydryl groups.
View Article and Find Full Text PDFFront Microbiol
December 2024
Meat Safety and Quality Research Unit, U.S. Department of Agriculture, U.S. Meat Animal Research Center, Clay Center, NE, United States.
Recent application of whole genome sequencing in the investigation of foodborne illness outbreaks has facilitated the identification of Reoccurring, Emerging, or Persistent (REP) bacterial strains that have caused illnesses over extended periods of time. Here, the complete genomes of two O157:H7 (EcO157) outbreak strains belonging to REPEXH01 and REPEXH02, respectively, were sequenced and annotated. Comparative genomics and phenotypic analyses were carried out to identify REP-associated traits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!