A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Estimation of Cropland Nitrogen Runoff Loss Loads in the Yangtze River Basin Based on the Machine Learning Approaches]. | LitMetric

A quantitative understanding of cropland nitrogen (N) runoff loss is critical for developing efficient N pollution control strategies. Using correlation analysis, a structural equation model, variance decomposition, and machine learning methods, this study identified the primary influencing factors of total N (TN) runoff loss from uplands (=570) and paddy (=434) fields in the Yangtze River Basin (YRB) and then developed a machine learning-based prediction model to quantify cropland N runoff loss load. The results indicated that runoff depth, soil N content, and fertilizer addition rate were the major influencing factors of TN runoff loss from uplands, whereas TN runoff loss rate from paddy fields was mainly regulated by runoff depth and fertilizer addition rate. Among the four used machine learning methods, the prediction models based on the random forest algorithm presented the highest accuracy (=0.65-0.94) for predicting upland and paddy field TN runoff loss rates. The random forest algorithm based model estimated a total cropland TN loss load in the YRB of 0.47 Tg·a (upland:0.25 Tg·a; paddy field:0.22 Tg·a) in 2013, with 58% of TN runoff loss load derived from the midstream and downstream regions. The models predicted that TN runoff loss loads from croplands in YRB would decrease by 2.4%-9.3% for five scenarios, with higher TN load reductions occurring from scenarios with decreased runoff amounts. To mitigate cropland N nonpoint source pollution in YRB, it is essential to integrate efficient water, fertilizer, and soil nutrient managements as well as to consider the midstream and downstream regions as the high priority area. The machine learning-based modeling method developed in this study overcame the difficulty of identifying the functional relationships between cropland TN loss rate and multiple influencing factors in developing relevant prediction models, providing a reliable method for estimating regional and watershed cropland TN loss load.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.202208129DOI Listing

Publication Analysis

Top Keywords

runoff loss
36
loss load
16
runoff
12
loss
12
machine learning
12
influencing factors
12
cropland loss
12
cropland nitrogen
8
nitrogen runoff
8
loss loads
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!