Therapeutic targeting of mitochondria-proteostasis axis by antioxidant polysaccharides in neurodegeneration.

Adv Protein Chem Struct Biol

Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, P.R. China; Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, P.R. China. Electronic address:

Published: July 2023

Aging is a major risk factor for many age-associated disorders, including neurodegenerative diseases. Both mitochondrial dysfunction and proteostatic decline are well-recognized hallmarks of aging and age-related neurodegeneration. Despite a lack of therapies for neurodegenerative diseases, a number of interventions promoting mitochondrial integrity and protein homeostasis (proteostasis) have been shown to delay aging-associated neurodegeneration. For example, many antioxidant polysaccharides are shown to have pharmacological potentials in Alzheimer's, Parkinson's and Huntington's diseases through regulation of mitochondrial and proteostatic pathways, including oxidative stress and heat shock responses. However, how mitochondrial and proteostatic mechanisms work together to exert the antineurodegenerative effect of the polysaccharides remains largely unexplored. Interestingly, recent studies have provided a growing body of evidence to support the crosstalk between mitostatic and proteostatic networks as well as the impact of the crosstalk on neurodegeneration. Here we summarize the recent progress of antineurodegenerative polysaccharides with particular attention in the mitochondrial and proteostatic context and provide perspectives on their implications in the crosstalk along the mitochondria-proteostasis axis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.apcsb.2023.02.017DOI Listing

Publication Analysis

Top Keywords

mitochondrial proteostatic
12
mitochondria-proteostasis axis
8
antioxidant polysaccharides
8
neurodegenerative diseases
8
antineurodegenerative polysaccharides
8
mitochondrial
5
proteostatic
5
therapeutic targeting
4
targeting mitochondria-proteostasis
4
axis antioxidant
4

Similar Publications

Model organisms for investigating the functional involvement of NRF2 in non-communicable diseases.

Redox Biol

December 2024

Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Non-communicable chronic diseases (NCDs) are most commonly characterized by age-related loss of homeostasis and/or by cumulative exposures to environmental factors, which lead to low-grade sustained generation of reactive oxygen species (ROS), chronic inflammation and metabolic imbalance. Nuclear factor erythroid 2-like 2 (NRF2) is a basic leucine-zipper transcription factor that regulates the cellular redox homeostasis. NRF2 controls the expression of more than 250 human genes that share in their regulatory regions a cis-acting enhancer termed the antioxidant response element (ARE).

View Article and Find Full Text PDF
Article Synopsis
  • Huntington's disease (HD) is linked to a mutation in the Huntingtin gene that disrupts normal brain function, and the study investigates how SUMOylation affects proteins involved in neuronal activity in HD mice.* -
  • Using advanced mass spectrometry, researchers found changes in SUMOylated proteins related to synaptic function and signaling pathways in HD tissue, which were different from non-transgenic mice.* -
  • Experiments on neurons from HD and control mice revealed that altering SUMOylation, particularly via the Pias1 protein, can improve signaling and activity deficits observed in HD cells.*
View Article and Find Full Text PDF

Mitochondrial genome expression is important for cellular bioenergetics. How mitochondrial RNA processing and translation are spatially organized across dynamic mitochondrial networks is not well understood. Here, we report that processed mitochondrial RNAs are consolidated with mitoribosome components into translation hubs distal to either nucleoids or processing granules in human cells.

View Article and Find Full Text PDF

Understanding the normal function of the Huntingtin (HTT) protein is of significance in the design and implementation of therapeutic strategies for Huntington's disease (HD). Expansion of the CAG repeat in the gene, encoding an expanded polyglutamine (polyQ) repeat within the HTT protein, causes HD and may compromise HTT's normal activity contributing to HD pathology. Here, we investigated the previously defined role of HTT in autophagy specifically through studying HTT's association with ubiquitin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!