Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Today, hydrogen is produced in refineries and petrochemicals using the methane reforming process, followed by a water gas shift reaction stage. The hydrogen produced has a purity of approximately 75%, and is purified further through an adsorption process. In this project, the feasibility of achieving a purity level greater than 90% through the use of a more effective adsorbent and the periodic process of pressure vacuum swing adsorption (PVSA) with a double-layer bed of active carbon and zeolite will be investigated. The design, simulation, and optimization of the hydrogen purification unit will also be conducted. The results of this study indicate that the proposed process can achieve a purity level of up to 97% for the output hydrogen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.139347 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!