The dual sintering of copper (Cu) nanoparticles (NPs) was introduced to produce conductive patterns suitable for flexible electronics applications. In this method, laser irradiation using a Nd:YAG laser with a wavelength of 1064 nm was performed at laser powers of 400, 600 and 800 mJ. The laser irradiation time was 15 and 30 s for each laser power. After laser irradiation, all of the Cu NP patterns were thermally sintered under formic acid vapors. The temperature and time for thermal treatment were selected as 260 °C and 15 min, respectively. The resultant physical, chemical, electrical and mechanical properties were evaluated and compared considering the six different dual sintering conditions. The Cu NP patterns sintered using 800 mJ for 30 s showed increased necking and coalescence compared to the other patterns and featured a microstructure with increased density. Despite being oxidized, the Cu NP patterns sintered with 800 mJ for 30 s showed the lowest electrical resistivity of 11.25Ω cm. The surface of every sintered Cu pattern was oxidized, and mechanical hardness increased with increasing laser power. The Cu NP pattern sintered with 800 mJ for 30 s demonstrated the highest hardness of 48.64 N mm. After sintering using the six different conditions, the Cu NP patterns exhibited a weight loss of 0.02-3.87 wt%, and their roughness varied in the range of 26.15-74.08 nm. This can be attributed to the effective removal of organic residues and the degree of particle agglomeration. After performing folding tests up to 50 cycles, Cu NP patterns showed an upward trend in resistance with increasing laser power and time. The highest and lowest resistance ratios were observed as 3.97 and 17.24 for the patterns sintered at 400 mJ for 15 s and 800 mJ for 30 s, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ace6a5 | DOI Listing |
Sensors (Basel)
January 2025
Soreq NRC, Yavne 81800, Israel.
Fiber Bragg gratings (FBGs) inscribed by UV light and different femtosecond laser techniques (phase mask, point-by-point, and plane-by-plane) were exposed-in several irradiation cycles-to accumulated high doses of gamma rays (up to 124 MGy) and neutron fluence (8.7 × 10/cm) in a research-grade nuclear reactor. The FBG peak wavelengths were measured continuously in order to monitor radiation-induced shifts.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Mechanical and Aerospace Engineering Department, Utah State University, Logan, UT 84322-4130, USA.
Laser powder bed fusion (LPBF) is an additive manufacturing process that has gained interest for its material fabrication due to multiple advantages, such as the ability to print parts with small feature sizes, good mechanical properties, reduced material waste, etc. However, variations in the key process parameters in LPBF may result in the instantiation of porosity defects and variation in build rate. Particularly, volumetric energy density (VED) is a variable that encapsulates a number of those parameters and represents the amount of energy input from the laser source to the feedstock.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Intense Laser Irradiation Laboratory, National Institute of Optics, National Research Council of Italy, 56124 Pisa, Italy.
The use of very high energy electron (VHEE) beams, with energies between 50 and 400 MeV, has drawn considerable interest in radiotherapy due to their deep tissue penetration, sharp beam edges, and low sensitivity to tissue density. VHEE beams can be precisely steered with magnetic components, positioning VHEE therapy as a cost-effective option between photon and proton therapies. However, the clinical implementation of VHEE therapy (VHEET) requires advances in several areas: developing compact, stable, and efficient accelerators; creating sophisticated treatment planning software; and establishing clinically validated protocols.
View Article and Find Full Text PDFLasers Med Sci
January 2025
Department of Bioscience, Federal University of São Paulo, R. Silva Jardim, 136, Vila Mathias, Santos, Sao Paulo, 11015-020, Brazil.
The aim of this study was to evaluate the effectiveness of an aquatic progressive resistance exercise (APRE) and PBM (associated or not) on morphology of skeletal muscle and biochemical markers using an experimental model of knee osteoarthritis (OA). Fifty male Wistar rats were randomly distributed into 5 groups: control group (CG); OA control (OAC); OA submitted to APRE (OAE); OA submitted to PBM (OAL); OA submitted to APRE and PBM (OAEL). Trained rats performed a water-jumping program carrying a load equivalent to 50-80% of their body mass strapped to their chest.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335 Taiwan. Electronic address:
Photothermal therapy (PTT) using thermal and tumor microenvironment-responsive reagents is promising for cancer treatment. This study demonstrates an effective PTT nanodrug consisting of hollow-structured, thermally sensitive polydopamine nanobowls (HPDA NB), molybdenum sulfide (MoS) nanozyme, and tirapazamine (TPZ; a hypoxia-responsive drug), with a structure of HPDA@TPZ/MoS NBs which is hereafter denoted as HPTZMoS NBs. With the Fenton-like activity, the HPTZMoS NBs in the presence of HO catalyze the formation of hydroxyl radicals, providing chemodynamic therapy (CDT) effect and deactivating glutathione.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!