Seawater electrolysis to produce hydrogen is a clean and sustainable strategy for the development of clean and sustainable energy storage systems. However, the erosion and destruction of electrocatalysts of the devices by Cl in seawater during splitting process make it very difficult to realize. In this work, a partially selenized FeCo layered double hydroxide (Se-FeCo-LDH) catalyst is successfully synthesized, which shows good electrocatalytic performance in seawater during water splitting due to both its excellent conductivity and large surface area. Moreover, an anion aggregation layer around the electrode during the catalytic process can be formed to avoid electrode erosion and destruction by Cl as well as the competitive reaction of chloride oxidation with the oxygen evolution reaction (OER), which not only improves the catalytic efficiency but also the durability of the catalyst. As a result, the overpotential is only 229 mV at a current density of 100 mA cm for OER in 1 M KOH. Only 1.446 V and 1.491 V voltages are required to reach a current density of 10 mA cm in overall alkaline water and seawater splitting, respectively. Besides, this Se-FeCo-LDH catalyst also achieves long-term stability up to 245 h in overall alkaline seawater splitting. The development of Se-FeCo-LDH catalyst should have an enlightening effect in the field of hydrogen production by (sea)water electrolysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2023.07.013DOI Listing

Publication Analysis

Top Keywords

seawater splitting
16
se-feco-ldh catalyst
12
partially selenized
8
selenized feco
8
feco layered
8
layered double
8
double hydroxide
8
alkaline seawater
8
seawater electrolysis
8
clean sustainable
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!