Purpose: Accurate prediction of outcomes for patients with acute ischemic stroke (AIS) is crucial for clinical decision-making. In this study, we developed prediction models based on non-contrast computed tomography (NCCT) radiomics and clinical features to predict the modified Rankin Scale (mRS) six months after hospital discharge.

Method: A two-center retrospective cohort of 240 AIS patients receiving conventional treatment was included. Radiomics features of the infarct area were extracted from baseline NCCT scans. We applied Kruskal-Wallis (KW) test and recursive feature elimination (RFE) to select features for developing clinical, radiomics, and fusion models (with clinical data and radiomics features), using support vector machine (SVM) algorithm. The prediction performance of the models was assessed by accuracy, sensitivity, specificity, F1 score, and receiver operating characteristic (ROC) curve. Shapley Additive exPlanations (SHAP) was applied to analyze the interpretability and predictor importance of the model.

Results: A total of 1454 texture features were extracted from the NCCT images. In the test cohort, the ROC analysis showed that the radiomics model and the fusion model showed AUCs of 0.705 and 0.857, which outperformed the clinical model (0.643), with the fusion model exhibiting the best performance. Additionally, the accuracy and sensitivity of the fusion model were also the best among the models (84.8% and 93.8%, respectively).

Conclusions: The model based on NCCT radiomics and machine learning has high predictive efficiency for the prognosis of AIS patients receiving conventional treatment, which can be used to assist early personalized clinical therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejrad.2023.110959DOI Listing

Publication Analysis

Top Keywords

receiving conventional
12
conventional treatment
12
fusion model
12
radiomics machine
8
machine learning
8
patients acute
8
acute ischemic
8
ischemic stroke
8
ncct radiomics
8
ais patients
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!