Aims: New drugs for heart failure (HF) that target restoring the impaired NO-sGC-cGMP pathway are being developed. We aimed to investigate the effects of vericiguat, an sGC stimulator, on cardiac function, blood pressure (BP), cardiac mitochondrial quality, and cardiac fibrosis in rat models of chronic mitral regurgitation (MR).

Materials And Methods: We surgically induced MR in 20 Sprague-Dawley rats and performed sham procedures on 10 rats (negative control). Four weeks post-surgery, we randomly divided the MR rats into two groups: MR group and MR + vericiguat group. Vericiguat (0.5 mg/kg, PO) was administered once a day via oral gavage for 8 weeks, while the sham and MR groups received equivalent volumes of drinking water instead. We took echocardiography and BP measurements at baseline (4 weeks post-surgery) and at the end of study (8 weeks after treatment). At the study end, all rats were euthanized and their hearts were immediately collected, weighed, and used for histopathology and mitochondrial quality assessments.

Key Findings: Vericiguat preserved cardiac functions and structural remodeling in the MR rats, with significantly lower systolic BPs than baseline values (P < 0.05). Additionally, vericiguat significantly improved the mitochondrial quality by attenuating ROS production, depolarization and swelling when comparing the values in both groups (P < 0.05). The fibrosis area also significantly decreased in the MR + vericiguat group (P < 0.05).

Significance: Vericiguat demonstrated cardioprotective effects on cardiac function, BP, and fibrosis by preserving mitochondrial quality in rats with HF due to MR.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2023.121929DOI Listing

Publication Analysis

Top Keywords

mitochondrial quality
12
vericiguat preserved
8
preserved cardiac
8
cardiac function
8
mitral regurgitation
8
cardiac
5
rats
5
vericiguat
4
function mitochondrial
4
quality rat
4

Similar Publications

Fluoride (F), as a natural element found in a wide range of sources such as water and certain foods, has been proven to be beneficial in preventing dental caries, but concerns have been raised regarding its potential deleterious effects on overall health. Sodium fluoride (NaF), another form of F, has the ability to accumulate in reproductive organs and interfere with hormonal regulation and oxidative stress pathways, contributing to reproductive toxicity. While the exact mechanisms of F-induced reproductive toxicity are not fully understood, this review aims to elucidate the mechanisms involved in testicular and ovarian injury.

View Article and Find Full Text PDF

Constitutive mitochondrial dynamics ensure quality control and metabolic fitness of cells, and their dysregulation has been implicated in various human diseases. The large GTPase Dynamin-related protein 1 (Drp1) is intimately involved in mediating constitutive mitochondrial fission and has been implicated in mitochondrial cell death pathways. During ferroptosis, a recently identified type of regulated necrosis driven by excessive lipid peroxidation, mitochondrial fragmentation has been observed.

View Article and Find Full Text PDF

The 40S ribosomal subunit recycling pathway is an integral link in the cellular quality control network, occurring after translational errors have been corrected by the ribosome-associated quality control (RQC) machinery. Despite our understanding of its role, the impact of translation quality control on cellular metabolism remains poorly understood. Here, we reveal a conserved role of the 40S ribosomal subunit recycling (USP10-G3BP1) complex in regulating mitochondrial dynamics and function.

View Article and Find Full Text PDF

Mitochondria derive the majority of their lipids from other organelles through contact sites. These lipids, primarily phosphoglycerolipids, are the main components of mitochondrial membranes. In the cell, neutral lipids like triacylglycerides (TAGs) are stored in lipid droplets, playing an important role in maintaining cellular health.

View Article and Find Full Text PDF

Mitochondrial fission and fusion in neurodegenerative diseases:Ca signalling.

Mol Cell Neurosci

January 2025

Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China. Electronic address:

Neurodegenerative diseases (NDs) are a group of disorders characterized by the progressive loss of neuronal structure and function. The pathogenesis is intricate and involves a network of interactions among multiple causes and systems. Mitochondria and Ca signaling have long been considered to play important roles in the development of various NDs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!