HMGB family proteins: Potential biomarkers and mechanistic factors in cardiovascular diseases.

Biomed Pharmacother

Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China. Electronic address:

Published: September 2023

Cardiovascular disease (CVD) is the most fatal disease that causes sudden death, and inflammation contributes substantially to its occurrence and progression. The prevalence of CVD increases as the population ages, and the pathophysiology is complex. Anti-inflammatory and immunological modulation are the potential methods for CVD prevention and treatment. High-Mobility Group (HMG) chromosomal proteins are one of the most abundant nuclear nonhistone proteins which act as inflammatory mediators in DNA replication, transcription, and repair by producing cytokines and serving as damage-associated molecular patterns in inflammatory responses. The most common and well-studied HMG proteins are those with an HMGB domain, which participate in a variety of biological processes. HMGB1 and HMGB2 were the first members of the HMGB family to be identified and are present in all investigated eukaryotes. Our review is primarily concerned with the involvement of HMGB1 and HMGB2 in CVD. The purpose of this review is to provide a theoretical framework for diagnosing and treating CVD by discussing the structure and function of HMGB1 and HMGB2.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2023.115118DOI Listing

Publication Analysis

Top Keywords

hmgb1 hmgb2
12
hmgb family
8
cvd
5
proteins
4
family proteins
4
proteins potential
4
potential biomarkers
4
biomarkers mechanistic
4
mechanistic factors
4
factors cardiovascular
4

Similar Publications

Cytoplasmic HMGB2 orchestrates CALR translocation in the course of immunogenic cell death.

Oncoimmunology

December 2024

Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.

A recent in vitro study showed that pharmacological inhibition of the nuclear export receptor XPO1 suppresses oxaliplatin-induced nuclear release of HMGB1 and HMGB2, as well as the translocation of CALR to the plasma membrane. Moreover, cell-targeted-HMGB2 protein potently induced CALR exposure, even in the absence of oxaliplatin.

View Article and Find Full Text PDF

HMGB2-induced calreticulin translocation required for immunogenic cell death and ferroptosis of cancer cells are controlled by the nuclear exporter XPO1.

Commun Biol

October 2024

Penn/CHOP Center of Excellence in Friedreich's Ataxia, Center of Excellence in Environmental Toxicology, and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Cisplatin and oxaliplatin cause the secretion of high mobility group box 1 (HMGB1) protein from cancer cells, which is necessary for initiation of immunogenic cell death (ICD). Calreticulin (CRT) translocation from the endoplasmic reticulum to the plasma membrane is also required; oxaliplatin induces this translocation but cisplatin does not. We have discovered that oxaliplatin causes the secretion of both HMGB1 and HMGB2 from the cell nucleus into the extracellular milieu.

View Article and Find Full Text PDF

HMGB3 protein belongs to the group of HMGB proteins from the superfamily of nuclear proteins with high electrophoretic mobility. HMGB proteins play an active part in almost all cellular processes associated with DNA-repair, replication, recombination, and transcription-and, additionally, can act as cytokines during infectious processes, inflammatory responses, and injuries. Although the structure and functions of HMGB1 and HMGB2 proteins have been intensively studied for decades, very little attention has been paid to HMGB3 until recently.

View Article and Find Full Text PDF

The Effect of HMGB1 and HMGB2 on Transcriptional Regulation Differs in Neuroendocrine and Adenocarcinoma Models of Prostate Cancer.

Int J Mol Sci

March 2024

Centro Interdisciplinar de Química e Bioloxía (CICA), Campus de Elviña, Universidade da Coruña, As Carballeiras, s/n, 15071 A Coruña, Spain.

Human high-mobility group-B (HMGB) proteins regulate gene expression in prostate cancer (PCa), a leading cause of oncological death in men. Their role in aggressive PCa cancers, which do not respond to hormonal treatment, was analyzed. The effects of and silencing upon the expression of genes previously related to PCa were studied in the PCa cell line PC-3 (selected as a small cell neuroendocrine carcinoma, SCNC, PCa model not responding to hormonal treatment).

View Article and Find Full Text PDF

The temporal protein signature analyses of developing human deciduous molar tooth germ.

Proteomics

October 2024

Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.

The tooth serves as an exemplary model for developmental studies, encompassing epithelial-mesenchymal transition and cell differentiation. The essential factors and pathways identified in tooth development will help understand the natural development process and the malformations of mineralized tissues such as skeleton. The time-dependent proteomic changes were investigated through the proteomics of healthy human molars during embryonic stages, ranging from the cap-to-early bell stage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!