Immunosensors that combine planar transducers with microfluidics to achieve in-flow biofunctionalization and assay were analyzed here regarding surface binding capacity, immobilization stability, binding stoichiometry, and amount and orientation of surface-bound IgG antibodies. Two IgG immobilization schemes, by physical adsorption [3-aminopropyltriethoxysilane (APTES)] and glutaraldehyde covalent coupling (APTES/GA), followed by blocking with bovine serum albumin (BSA) and streptavidin (STR) capture, are monitored with white light reflectance spectroscopy (WLRS) sensors as thickness of the adlayer formed on top of aminosilanized silicon chips. Multi-protein surface composition (IgG, BSA, and STR) is determined by time of flight secondary ion mass spectrometry (TOF-SIMS) combined with principal component analysis (applying barycentric coordinates to the score plot). In-flow immobilization shows at least 1.7 times higher surface binding capacity than static adsorption. In contrast to physical immobilization, which is unstable during blocking with BSA, chemisorbed antibodies desorb (reducing ) only when the bilayer is formed. Also, TOF-SIMS data show that IgG molecules are partially exchanged with BSA on APTES but not on APTES/GA modified chips. This is confirmed by the WLRS data that show different binding stoichiometry between the two immobilization schemes for the direct binding IgG/anti-IgG assay. The identical binding stoichiometry for STR capture results from partial replacement with BSA of vertically aligned antibodies on APTES, with fraction of exposed Fab domains higher than on APTES/GA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10373486PMC
http://dx.doi.org/10.1021/acs.langmuir.3c01181DOI Listing

Publication Analysis

Top Keywords

binding stoichiometry
16
in-flow biofunctionalization
8
silicon chips
8
white light
8
light reflectance
8
reflectance spectroscopy
8
immobilization stability
8
stability binding
8
surface binding
8
binding capacity
8

Similar Publications

Self-association of cyclodextrin inclusion complexes in a deep eutectic solvent enhances guest solubility.

Carbohydr Polym

March 2025

Institute of Chemistry, The Fritz Haber Research Center, and The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, The Hebrew University, Jerusalem 9190401, Israel. Electronic address:

Cyclodextrins are widely used pharmaceutical excipients known to increase the solubility of drug compounds through formation of inclusion complexes. A prominent limitation of common cyclodextrins is their own scarce solubility in water, which renders them unsuitable for many drug formulations. Cyclodextrin solubility can be enhanced in appropriate media such as Deep Eutectic Solvents (DESs).

View Article and Find Full Text PDF

A new conjugate, 2-(4-(anthracen-9-yl) phenyl)-[1,2-d]imidazole-1H-anthraquninone (AQI) has been designed and synthesized as a molecular probe 4. The photophysical and electrochemical behavior of the probe in the absence and presence of different class of ions were examined in acetonitrile solution. The probe 4 with F- and CN- anions showed ratiometric fluorescence "turn - On" response due to variation in ICT processes.

View Article and Find Full Text PDF

The effect of 2-hydroxpropyl-β-cyclodextrin (2HPβCD) with or without divalent metal ions (Ca, Mg, and Zn) on the stability of dalbavancin in acetate buffer was investigated. Dalbavancin recovery from formulations with 2HPβCD and divalent metal ions after four weeks of storage at 5 °C and 55 °C was measured by RP-HPLC and HP-SEC; a longer-term study was carried out over six months at 5 °C, 25 °C, and 40 °C. Binding of 2HPβCD was characterized by isothermal titration calorimetry (ITC) and nuclear magnetic resonance (NMR).

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are promising biomarkers for diagnosing complex diseases such as cancer and neurodegenerative disorders. Yet, their clinical application is hindered by challenges in isolating cancer-derived EVs efficiently due to their broad size distribution in biological samples. This study introduces a microfluidic device fabricated using off-stoichiometry thiol-ene and cyclic olefin copolymer, addressing the absorption limitations of polydimethylsiloxane (PDMS).

View Article and Find Full Text PDF

Surface modification is essential in microfluidic applications due to the inherent hydrophobicity of polymers, which can lead to biofouling and reagent denaturation. Despite the development, challenges such as hydrophobic molecule absorption and limitations in scaling are still present. Off-stoichiometry thiol-ene (OSTE) materials have emerged as a promising alternative, offering advantages like rapid prototyping, minimal hydrophobic absorption, and customizable surface chemistries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!