We report on a copper-catalyzed three-component reaction for the synthesis of disubstituted nicotinonitriles using 3-bromopropenals, benzoylacetonitriles, and ammonium acetate (NHOAc). The Knoevenagel-type condensation of 3-bromopropenals with benzoylacetonitriles gives δ-bromo-2,4-dienones that contain strategically placed functional groups that react with the ammonia generated to give the corresponding azatrienes. These azatrienes can then be transformed into trisubstituted pyridines under the reaction conditions via a reaction sequence involving 6π-azaelectrocyclization and aromatization.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.3c00929DOI Listing

Publication Analysis

Top Keywords

synthesis disubstituted
8
disubstituted nicotinonitriles
8
3-bromopropenals benzoylacetonitriles
8
one-pot knoevenagel/imination/6π-azaelectrocyclization
4
knoevenagel/imination/6π-azaelectrocyclization sequence
4
sequence synthesis
4
nicotinonitriles report
4
report copper-catalyzed
4
copper-catalyzed three-component
4
three-component reaction
4

Similar Publications

The functionalization of pyridines at positions remote to the N-atom remains an outstanding problem in organic synthesis. The inherent challenges associated with overriding the influence of the embedded N-atom within pyridines was overcome using n-butylsodium, which provided an avenue to deprotonate and functionalize the C4-position over traditionally observed addition products that are formed with organolithium bases. In this work, we show that freshly generated 4-sodiopyrdines could undergo transition metal free alkylation reactions directly with a variety of primary alkyl halides bearing diverse functional groups.

View Article and Find Full Text PDF

Recent advances in the reactions of isatin-derived MBH carbonates for the synthesis of spirooxindoles.

Org Biomol Chem

January 2025

Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.

As one of the main fragments in medical drugs, spirooxindole has received considerable attention from organic and medicinal chemists. In the past few decades, chemists have been searching for more straightforward and efficient methods to produce compounds containing a spirooxindole fragment. In this regard, isatin-derived Morita-Baylis-Hillman (MBH) carbonates have been widely used as versatile building blocks for the synthesis of spirooxindole structures.

View Article and Find Full Text PDF

A Rh(III)-catalyzed sequential C-H bond addition to dienes and in situ formed aldimines was developed, allowing for the preparation of otherwise challenging to access amines with quaternary centers at the -position. A broad range of dienes were effective inputs and installed a variety of aryl and alkyl substituents at the quaternary carbon site. Aryl and alkyl sulfonamide and carbamate nitrogen substituents were incorporated by using different formaldimine precursors.

View Article and Find Full Text PDF

Hydroalkylation of terminal alkynes is a powerful approach to the synthesis of disubstituted alkenes. However, its application is largely unexplored in the synthesis of α,β-unsaturated carbonyls, which are common among synthetic intermediates and biologically active molecules. The thermodynamically less stable -isomers of activated alkenes have been particularly challenging to access because of their propensity for isomerization and the paucity of reliable -selective hydroalkylation methods.

View Article and Find Full Text PDF

Herein, we present the enantioselective synthesis of 2,3-dihydro-4-quinolones bearing chiral tetrasubstituted carbons from isatins and 2'-aminoacetophenones. The transformation is mediated by a chiral phosphoric acid catalyst and proceeds via an generated ketimine and subsequent enantioselective intramolecular cyclization. The methodology features a broad scope and functional group tolerance with yields and enantioselectivities of up to 99% and 98% ee.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!