AI Article Synopsis

Article Abstract

Magic spot nucleotides (p)ppGpp are important signaling molecules in bacteria and plants. In the latter, RelA-SpoT homologue (RSH) enzymes are responsible for (p)ppGpp turnover. Profiling of (p)ppGpp is more difficult in plants than in bacteria due to lower concentrations and more severe matrix effects. Here, we report that capillary electrophoresis mass spectrometry (CE-MS) can be deployed to study (p)ppGpp abundance and identity in . This goal is achieved by combining a titanium dioxide extraction protocol and pre-spiking with chemically synthesized stable isotope-labeled internal reference compounds. The high sensitivity and separation efficiency of CE-MS enables monitoring of changes in (p)ppGpp levels in upon infection with the pathogen pv. . We observed a significant increase of ppGpp post infection that is also stimulated by the flagellin peptide flg22 only. This increase depends on functional flg22 receptor FLS2 and its interacting kinase BAK1 indicating that pathogen-associated molecular pattern (PAMP) receptor-mediated signaling controls ppGpp levels. Transcript analyses showed an upregulation of upon flg22 treatment and both and after infection. mutants deficient in RSH2 and RSH3 activity display no ppGpp accumulation upon infection and flg22 treatment, supporting the involvement of these synthases in PAMP-triggered innate immune responses to pathogens within the chloroplast.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10375528PMC
http://dx.doi.org/10.1021/jacs.3c04445DOI Listing

Publication Analysis

Top Keywords

magic spot
8
flg22 treatment
8
infection
5
pppgpp
5
bacterial pathogen
4
pathogen infection
4
infection triggers
4
triggers magic
4
spot nucleotide
4
nucleotide signaling
4

Similar Publications

In September 2023, broccoli (Brassica oleracea var. italica) 'Sweet Bunch' plants on an organic farm in Buncombe County, North Carolina (NC), displayed symptoms of Alternaria leaf spot. Disease affected 10 to 20% of leaf area on all (approximately 30) plants.

View Article and Find Full Text PDF

The 5' cap structure is crucial to mRNA function, with its diverse methylation patterns depending on the cellular state. Sensitive analytical methods are sought after to quantify this cap variety also referred to as cap epitranscriptome. To address a bottleneck for accurate and precise quantitation, we report a facile and fast access to high-quality synthetic standards via a new route, involving P(III)-amidite chemistry.

View Article and Find Full Text PDF

Evolution of the flat band and the role of lattice relaxations in twisted bilayer graphene.

Nat Mater

August 2024

State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, People's Republic of China.

Magic-angle twisted bilayer graphene exhibits correlated phenomena such as superconductivity and Mott insulating states related to the weakly dispersing flat band near the Fermi energy. Such a flat band is expected to be sensitive to both the moiré period and lattice relaxations. Thus, clarifying the evolution of the electronic structure with the twist angle is critical for understanding the physics of magic-angle twisted bilayer graphene.

View Article and Find Full Text PDF

Magic spot nucleotides (p)ppGpp are important signaling molecules in bacteria and plants. In the latter, RelA-SpoT homologue (RSH) enzymes are responsible for (p)ppGpp turnover. Profiling of (p)ppGpp is more difficult in plants than in bacteria due to lower concentrations and more severe matrix effects.

View Article and Find Full Text PDF

The stringent response enables bacteria to survive nutrient starvation, antibiotic challenge, and other threats to cellular survival. Two alarmone (magic spot) second messengers, guanosine pentaphosphate (pppGpp) and guanosine tetraphosphate (ppGpp), which are synthesized by RelA/SpoT homologue (RSH) proteins, play central roles in the stringent response. The pathogenic oral spirochete bacterium Treponema denticola lacks a long-RSH homologue but encodes putative small alarmone synthetase (Tde-SAS, TDE1711) and small alarmone hydrolase (Tde-SAH, TDE1690) proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!