Accurately identifying γδ T cells in large single-cell RNA sequencing (scRNA-seq) datasets without additional single-cell γδ T cell receptor sequencing (sc-γδTCR-seq) or CITE-seq (cellular indexing of transcriptomes and epitopes sequencing) data remains challenging. In this study, we developed a TCR module scoring strategy for human γδ T cell identification (i.e. based on modular gene expression of constant and variable TRA/TRB and TRD genes). We evaluated our method using 5' scRNA-seq datasets comprising both sc-αβTCR-seq and sc-γδTCR-seq as references and demonstrated that it can identify γδ T cells in scRNA-seq datasets with high sensitivity and accuracy. We observed a stable performance of this strategy across datasets from different tissues and different subtypes of γδ T cells. Thus, we propose this analysis method, based on TCR gene module scores, as a standardized tool for identifying and reanalyzing γδ T cells from 5'-end scRNA-seq datasets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jleuko/qiad069 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!