Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A Search was conducted in international databases including Scopus, PubMed, Embase, and Web of Science from 10 January 2005 to 15 January 2023. The risk quotient (RQ) of Estrone (E1), 17β-E2 (E2), and Estriol (E3) on the surface water resources of China was calculated by Monte Carlo Simulation (MCS) technique. The rank order of steroid hormones based on pooled (weighted average) concentration in surface water was E3 (2.15 ng/l) > E2 (2.01 ng/l) > E1 (1.385 ng/l). The concentration of E1 in lake (236.50.00 ng/l), 17β-E2 in river (78.50 ng/l), and E3 in lake (103.1 ng/l) were higher than in other surface water resources in China. RQ related to E1, 17β-E2 and E3 in 68.00%, 88.89% and 3.92% of surface water resources were high ecological risk, respectively. Therefore, carrying out source control plans for steroid hormones in surface water sources should be conducted continuously.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09603123.2023.2234843 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!