A general method of separating isotopes by centrifuging dissolved chemical compounds in a liquid is introduced. This technique can be applied to almost all elements and leads to large separation factors. The method has been demonstrated in several isotopic systems including Ca, Mo, O, and Li with single-stage selectivities of 1.046 to 1.067 per neutron mass difference (e.g., 1.43 in Ca/Ca), which are beyond the capabilities of various conventional methods. Equations are derived to model the process, and the results agree with those of the experiments. The scalability of the technique has been demonstrated by a three-stage enrichment of Ca with a total Ca/Ca selectivity of 2.43, and the scalability is more broadly supported through analogies to gas centrifuge, whereby countercurrent centrifugation can further multiply the separation factor by 5 to 10 times per stage in a continuous process. Optimal centrifuge conditions and solutions can achieve both high-throughput and highly efficient isotope separation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10337892PMC
http://dx.doi.org/10.1126/sciadv.adg8993DOI Listing

Publication Analysis

Top Keywords

efficient isotope
8
isotope separation
8
liquid solution
4
solution centrifugation
4
centrifugation safe
4
safe scalable
4
scalable efficient
4
separation
4
separation general
4
general method
4

Similar Publications

Positron-emission tomography (PET) offers high sensitivity for cancer diagnosis. However, small-molecule-based probes often exhibit insufficient accumulation in tumor sites, while nanoparticle-based agents typically have limited delivery efficiency. To address this challenge, this study proposes a novel PET imaging probe, Ga-CBT-PSMA, designed for prostate cancer.

View Article and Find Full Text PDF

Previous studies showed no improvement in bacterial biomass for Puniceispirillum marinum IMCC1322 under light regimes. Nevertheless, in nutrient-replete cultures with higher inoculating cell densities, strain IMCC1322 exhibited proteorhodopsin photoheterotrophy. Increasing both inoculum size and the amino acid pool can eliminate quorum sensing and starvation responses in strain IMCC1322.

View Article and Find Full Text PDF

Radon, a common radioactive indoor air pollutant, is the second leading cause of lung cancer in the United States. Knowledge about its distribution is essential for risk assessment and designing efficient protective regulations. However, the three current radon maps for the United States are unable to provide the up-to-date, high-resolution, and time-varying radon concentrations.

View Article and Find Full Text PDF

Crystalline γ-FeO(OH) dominantly possessing ─OH terminals (𝛾-FeO(OH)), polycrystalline γ-FeO(OH) containing multiple ─O, ─OH, and Fe terminals (𝛾-FeO(OH)), and α-FeO majorly containing ─O surface terminals are used as electrocatalysts to study the effect of surface terminals on electrocatalytic nitrate reduction reaction (eNORR) selectivity and stabilization of reaction intermediates. Brunauer-Emmett-Teller analysis and electrochemically determined surface area suggest a high active surface area of 117.79 m g (ECSA: 0.

View Article and Find Full Text PDF

Selective Hydrogen Isotope Exchange Catalysed by Simple Alkali-Metal Bases in DMSO.

Angew Chem Int Ed Engl

January 2025

Universitat Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, 3012, Bern, SWITZERLAND.

Isotope Exchange processes are becoming the preferred way to prepare isotopically labelled molecules, avoiding the redesign of multistep synthetic protocols. In the case of deuterium incorporation, the most used strategy has employed transition metals, that offer high reactivity under mild reaction conditions. Despite their success, the trade-off is that these metals are precious, and often exhibit high toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!