Battery-Operated and Self-Heating Solid-Phase Microextraction Device for Field Detection and Long-Term Preservation of Mercury in Soil.

Anal Chem

Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.

Published: July 2023

The application of headspace solid-phase microextraction (HS-SPME) for mercury preservation and detection still has several shortcomings, including the use of high-temperature desorption chamber, the consumption of expensive reagent (NaBEt or NaBPr), and analyte loss during sample storage. Herein, a self-heating HS-SPME device using a gold-coated tungsten (Au@W) fiber was developed for the field detection of mercury in soil by miniature point discharge optical emission spectrometry (μPD-OES). Hg was reduced to Hg with NaBH solution and then preconcentrated with the Au@W fiber. The adsorbed Hg could be rapidly desorbed by directly heating the fiber with a mini lithium battery and subsequently detected by μPD-OES. A limit of detection (LOD) of 0.008 mg kg was obtained with a relative standard deviation (RSD) of 2.4%. The accuracy of the self-heating HS-SPME was evaluated by analyzing a soil certified reference material (CRM) and nine soil samples with satisfactory recoveries (86-111%). Compared to the conventional external heating method, the proposed method reduces desorption time and power consumption from 80 s and 60 W to 20 s and 2.5 W, respectively. Moreover, the self-heating device enables the μPD-OES system to remove the high-temperature desorption chamber, making it more compact and suitable for field analytical chemistry. Interestingly, the Au@W SPME fiber can be also used for the long-term preservation of mercury with a sample loss rate <5% after 30 days of storage at room temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.3c00686DOI Listing

Publication Analysis

Top Keywords

solid-phase microextraction
8
field detection
8
long-term preservation
8
preservation mercury
8
mercury soil
8
high-temperature desorption
8
desorption chamber
8
self-heating hs-spme
8
au@w fiber
8
battery-operated self-heating
4

Similar Publications

Porphyrin-Based Covalent Organic Framework Reinforced Hollow Fiber for Solid-Phase Microextraction of Tebuconazole and Propiconazole.

J Sep Sci

January 2025

Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.

Herein, an amino-functionalized covalent organic framework was synthesized and accommodated in the pores of porous hollow fiber. In this context, tetra (4-aminophenyl) porphyrin was synthesized for preparing the desired covalent organic framework as the extracting sorbent and employed for hollow fiber solid-phase microextraction of tebuconazole and propiconazole. With respect to the amino groups of the as-synthesized porphyrin-based covalent organic framework, the extracting device has the ability of establishing a hydrogen bond with the selected model analytes.

View Article and Find Full Text PDF

Solid-phase microextraction (SPME) is a fast and simple sample preparation technique that enables the enrichment of analytes, and it is used in combination with other detection techniques to provide accurate and sensitive analytical methods. SPME is widely used in environmental monitoring, food safety, life analysis, biomedicine, and other applications. The extractive coating is the core of the SPME technique, and the properties of the extractive coating greatly influence extraction selectivity and efficiency, as well as the enrichment effect.

View Article and Find Full Text PDF

The objective of this study was to evaluate the flavor profiles of water-boiled pork meatballs at different ultrasonic powers (0, 150, 300, 450, 600, and 750 W) using solid-phase microextraction gas chromatography-mass spectrometry (SPME-GC-MS) combined with electronic nose (E-nose). A total of 36 volatile compounds were determined by SPME-GC-MS, including alcohols, aromatic hydrocarbons, aldehydes, terpenes, alkanes, phenols, ketones, and other. With the appropriate ultrasound treatment, the type and relative content of volatile compounds were significantly increased (P < 0.

View Article and Find Full Text PDF

This study was intended to provide a novel process that fills a knowledge gap in relation to the enhancement of pulses utilization. The primary goal was to develop an experimental framework for using a high-pressure supercritical fluid extruder (SCFX) as a continuous bioreactor to produce off-flavor reduced and functionally superior pulse flours and protein concentrates in a single step. The current study focused on using SCFX processing to remove off-flavor from pulse flour and protein concentrates, enhancing the quality, acceptability, and marketability of pulse-based products.

View Article and Find Full Text PDF

The presence of chlorinated compounds in water resources presents various environmental and health risks. Therefore, there is a precise need to develop a potential technique for fast and efficient monitoring of chlorinated contaminants in water due to environmental protection and regulation compliance. Here, we designed a paper-based thin-film solid-phase microextraction (TF-SPME) patch to estimate 4-chlorophenol (4-CRP), a widely known environmentally hazardous pollutant in water samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!