Cytochrome P450 1B1 (CYP1B1) has been widely associated with the development of cardiac pathologies due to its ability to produce cardiotoxic metabolites like midchain hydroxyeicosatetraenoic acids (HETEs) from arachidonic acid (AA) through an allylic oxidation reaction. 16-HETE is a subterminal HETE that is also produced by CYP-mediated AA metabolism. 19-HETE is another subterminal HETE that was found to inhibit CYP1B1 activity, lower midchain HETEs, and have cardioprotective effects. However, the effect of 16-HETE enantiomers on CYP1B1 has not yet been investigated. We hypothesized that 16(R/S)-HETE could alter the activity of CYP1B1 and other CYP enzymes. Therefore, this study was carried out to investigate the modulatory effect of 16-HETE enantiomers on CYP1B1 enzyme activity, and to examine the mechanisms by which they exert these modulatory effects. To investigate whether these effects are specific to CYP1B1, we also investigated 16-HETE modulatory effects on CYP1A2. Our results showed that 16-HETE enantiomers significantly increased CYP1B1 activity in RL-14 cells, recombinant human CYP1B1, and human liver microsomes, as seen by the significant increase in 7-ethoxyresorufin deethylation rate. On the contrary, 16-HETE enantiomers significantly inhibited CYP1A2 catalytic activity mediated by the recombinant human CYP1A2 and human liver microsomes. 16R-HETE showed stronger effects than 16S-HETE. The sigmoidal binding mode of the enzyme kinetics data demonstrated that CYP1B1 activation and CYP1A2 inhibition occurred through allosteric regulation. In conclusion, our study provides the first evidence that 16R-HETE and 16S-HETE increase CYP1B1 catalytic activity through an allosteric mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11010-023-04801-4 | DOI Listing |
Eur J Drug Metab Pharmacokinet
November 2023
Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
Background: Cytochrome P450 (CYP) metabolizes arachidonic acid to produce bioactive metabolites such as EETs and HETEs: mid-chain, subterminal, and terminal HETEs. Recent studies have revealed the role of CYP1B1 and its associated cardiotoxic mid-chain HETE metabolites in developing cardiac hypertrophy and heart failure. Subterminal HETEs have also been involved in various physiological and pathophysiological processes; however, their role in cardiac hypertrophy has not been fully defined.
View Article and Find Full Text PDFMol Cell Biochem
June 2024
Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada.
Can J Physiol Pharmacol
August 2023
Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
Chem Biol Interact
February 2019
Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada. Electronic address:
Cytochrome P450 (P450) enzymes are superfamily of monooxygenases that hold the utmost diversity of substrate structures and catalytic reaction forms amongst all other enzymes. P450 enzymes metabolize arachidonic acid (AA) to a wide array of biologically active lipid mediators. P450-mediated AA metabolites have a significant role in normal physiological and pathophysiological conditions, hence they could be promising therapeutic targets in different disease states.
View Article and Find Full Text PDFBioorg Med Chem
July 2002
M.V. Lomonosov State Academy of Fine Chemical Technology, 117571 Pr. Vernadskogo 86, Moscow, Russian Federation.
(5Z,8Z,11Z,13E)-15-Hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE) is not well oxygenated by arachidonate 15-lipoxygenases because of two structural reasons: (i) it contains a hydrophilic OH-group in close proximity to its methyl end and (ii) it lacks the bisallylic methylene at C(13). We synthesized racemic (5Z,8Z,11Z,14Z)-16-hydroxy-5,8,11,14-eicosatetraenoic acid (16-HETE) which still contains the bisallylic C(13), separated the enantiomers reaching an optical purity of >99% and tested them as substrates for 5- and 15-lipoxygenases. Our synthetic pathway, which is based on stereospecific hydrogenation of a polyacetylenic precursor, yielded substantial amounts (30%) of 14,15-dehydro-16-HETE in addition to 16-HETE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!