A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Considering the Influence of Coronary Motion on Artery-Specific Biomechanics Using Fluid-Structure Interaction Simulation. | LitMetric

AI Article Synopsis

  • The study focuses on how the endothelium of coronary arteries is affected by wall shear stress and vessel wall strain, which are important for understanding artery health.
  • Researchers developed fluid-structure interaction (FSI) models for three specific coronary arteries, incorporating real experimental geometries and conditions to analyze the biomechanics more accurately.
  • Findings showed that incorporating bending in the models significantly altered shear stress metrics and wall strain, indicating that analyses should consider the unique bending characteristics of each vessel to better understand coronary artery behavior.

Article Abstract

The endothelium in the coronary arteries is subject to wall shear stress and vessel wall strain, which influences the biology of the arterial wall. This study presents vessel-specific fluid-structure interaction (FSI) models of three coronary arteries, using directly measured experimental geometries and boundary conditions. FSI models are used to provide a more physiologically complete representation of vessel biomechanics, and have been extended to include coronary bending to investigate its effect on shear and strain. FSI both without- and with-bending resulted in significant changes in all computed shear stress metrics compared to CFD (p = 0.0001). Inclusion of bending within the FSI model produced highly significant changes in Time Averaged Wall Shear Stress (TAWSS) + 9.8% LAD, + 8.8% LCx, - 2.0% RCA; Oscillatory Shear Index (OSI) + 208% LAD, 0% LCx, + 2600% RCA; and transverse wall Shear Stress (tSS) + 180% LAD, + 150% LCx and + 200% RCA (all p < 0.0001). Vessel wall strain was homogenous in all directions without-bending but became highly anisotropic under bending. Changes in median cyclic strain magnitude were seen for all three vessels in every direction. Changes shown in the magnitude and distribution of shear stress and wall strain suggest that bending should be considered on a vessel-specific basis in analyses of coronary artery biomechanics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10409843PMC
http://dx.doi.org/10.1007/s10439-023-03214-0DOI Listing

Publication Analysis

Top Keywords

shear stress
16
wall shear
12
fluid-structure interaction
8
coronary arteries
8
fsi models
8
shear
6
wall
5
considering influence
4
coronary
4
influence coronary
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!