Antibiotics are among the most utilized drugs in pediatrics. Nonetheless, there is a lack in pharmacokinetics information for this population, and dosing criteria may vary between healthcare centers. Physiological variability associated with maturation in pediatrics makes it challenging to reach a consensus on adequate dosing, which is further accentuated in more vulnerable groups, such as critically ill or oncology patients. Model-informed precision dosing is a useful practice that allows dose optimization and attainment of antibiotic-specific pharmacokinetic/pharmacodynamic targets. The aim of this study was to evaluate the needs of model-informed precision dosing of antibiotics in a pediatrics unit, at a pilot scale. Pediatric patients under antibiotic treatment were monitored with either a pharmacokinetic/pharmacodynamic optimized sampling scheme or through opportunistic sampling. Clindamycin, fluconazole, linezolid, meropenem, metronidazole, piperacillin, and vancomycin plasma concentrations were quantified through a liquid chromatography coupled to mass spectrometry method. Pharmacokinetic parameters were estimated using a Bayesian approach to verify pharmacokinetic/pharmacodynamic target attainment. A total of 23 pediatric patients aged 2 to 16 years were included, and 43 dosing regimens were evaluated; 27 (63%) of them required adjustments as follows: 14 patients were underdosed, 4 were overdosed, and 9 patients needed infusion rate adjustments. Infusion rate adjustments were mostly recommended for piperacillin and meropenem; daily doses were augmented for vancomycin and metronidazole, meanwhile linezolid was adjusted for under- and overdosing. Clindamycin and fluconazole regimens were not adjusted at all.  Conclusion: Results showcase a lack of antibiotic pharmacokinetic/pharmacodynamic target attainment (particularly for linezolid, vancomycin, meropenem, and piperacillin), and the need for model-informed precision dosing in pediatrics. This study provides pharmacokinetic evidence which can further improve antibiotic dosing practices. What is Known: • Model-informed precision dosing is performed in pediatrics to optimize the treatment of antimicrobial drugs such as vancomycin and aminoglycosides, while its usefulness is debated for other groups (beta-lactams, macrolides, etc.). What is New: • Vulnerable pediatric subpopulations, such as critically ill or oncology patients, can benefit the most from model-informed precision dosing of antibiotics. • Model-informed precision dosing of linezolid, meropenem, piperacillin, and vancomycin is particularly useful in pediatrics, and further research may improve dosing practices altogether.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00431-023-05103-zDOI Listing

Publication Analysis

Top Keywords

model-informed precision
28
precision dosing
28
dosing
12
antimicrobial drugs
8
drugs pediatrics
8
pilot scale
8
critically ill
8
ill oncology
8
oncology patients
8
dosing antibiotics
8

Similar Publications

Monoclonal antibodies (mAbs) are critical components in the therapeutic landscape, but their dosing strategies often evolve post-approval as new data emerge. This review evaluates post-marketing label changes in dosing information for FDA-approved mAbs from January 2015 to September 2024, with a focus on both initial and extended indications. We systematically analyzed dosing modifications, categorizing them into six predefined groups: Dose increases or decreases, inclusion of new patient populations by body weight or age, shifts from body weight-based dosing to fixed regimens, and adjustments in infusion rates.

View Article and Find Full Text PDF

Tobramycin dosing in patients with cystic fibrosis (CF) is challenged by its high pharmacokinetic (PK) variability and narrow therapeutic window. Doses are typically individualized using two-sample log-linear regression (LLR) to quantify the area under the concentration-time curve (AUC). Bayesian model-informed precision dosing (MIPD) may allow dose individualization with fewer samples; however, the relative performance of these methods is unknown.

View Article and Find Full Text PDF

Patient care and control of inflammatory disorders, such as psoriasis, can be improved by model-informed precision dosing (MIPD) techniques based on population pharmacokinetic/pharmacodynamic (PK/PD) models. Clinical dose selection decisions based on MIPD strategies need to take account of the uncertainty associated with the individual PK/PD model parameters, which is determined by the quantity of individual observational data collected in clinical practice. The aim of this study was to propose an approach for personalized dosage regimens of secukinumab (SCK) in 22 Spanish patients with plaque psoriasis, whose severity level was considered moderate to severe, taking into account the uncertainty associated with individual parameters in a population-based PK/PD model.

View Article and Find Full Text PDF

Purpose: Determining the optimal dosage of norvancomycin (NVCM) for Chinese patients with community-acquired pneumonia (CAP) caused by gram-positive cocci remains uncertain. This research aimed to identify influential factors affecting NVCM pharmacokinetics and explore optimal dosage regimens via population pharmacokinetic (PPK) analysis.

Patients And Methods: A prospective analysis was conducted at the Second Hospital of Hebei Medical University (Shijiazhuang, China).

View Article and Find Full Text PDF

BAY 2413555 is a novel selective and reversible positive allosteric modulator of the type 2 muscarinic acetylcholine (M2) receptor, aimed at enhancing parasympathetic signaling and restoring cardiac autonomic balance for the treatment of heart failure (HF). This study tested the safety, tolerability and pharmacokinetics of this novel therapeutic option. REMOTE-HF was a multicenter, double-blind, randomized, placebo-controlled, phase Ib dose-titration study with two active arms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!