Transcranial alternating current stimulation (tACS) offers a unique method to temporarily manipulate the activity of the stimulated brain region in a frequency-dependent manner. However, it is not clear if repetitive modulation of ongoing oscillatory activity with tACS over multiple days can induce changes in grey matter resting-state functional connectivity and white matter structural integrity. The current study addresses this question by applying multiple-session theta band stimulation on the left dorsolateral prefrontal cortex (L-DLPFC) during arithmetic training. Fifty healthy participants (25 males and 25 females) were randomly assigned to the experimental and sham groups, half of the participants received individually adjusted theta band tACS, and half received sham stimulation. Resting-state functional magnetic resonance (rs-fMRI) and diffusion-weighted imaging (DWI) data were collected before and after 3 days of tACS-supported procedural learning training. Resting-state network analysis showed a significant increase in connectivity for the frontoparietal network (FPN) with the precuneus cortex. Seed-based analysis with a seed defined at the primary stimulation site showed an increase in connectivity with the precuneus cortex, posterior cingulate cortex (PCC), and lateral occipital cortex. There were no effects on the structural integrity of white matter tracts as measured by fractional anisotropy, and on behavioral measures. In conclusion, the study suggests that multi-session task-associated tACS can produce significant changes in resting-state functional connectivity; however, changes in functional connectivity do not necessarily translate to changes in white matter structure or behavioral performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10471656PMC
http://dx.doi.org/10.1007/s00429-023-02667-2DOI Listing

Publication Analysis

Top Keywords

resting-state functional
12
functional connectivity
12
white matter
12
transcranial alternating
8
alternating current
8
current stimulation
8
dorsolateral prefrontal
8
prefrontal cortex
8
structural integrity
8
theta band
8

Similar Publications

Introduction: Chronic low back pain (CLBP) is a global health issue, and its nonspecific causes make treatment challenging. Understanding the neural mechanisms of CLBP should contribute to developing effective therapies.

Objectives: To compare current source density (CSD) and functional connectivity (FC) extracted from resting electroencephalography (EEG) between patients with CLBP and healthy controls and to examine the correlations between EEG indices and symptoms.

View Article and Find Full Text PDF

Introduction: Autism Spectrum Disorder (ASD) is characterized by deficits in social cognition, self-referential processing, and restricted repetitive behaviors. Despite the established clinical symptoms and neurofunctional alterations in ASD, definitive biomarkers for ASD features during neurodevelopment remain unknown. In this study, we aimed to explore if activation in brain regions of the default mode network (DMN), specifically the medial prefrontal cortex (MPC), posterior cingulate cortex (PCC), superior temporal sulcus (STS), inferior frontal gyrus (IFG), angular gyrus (AG), and the temporoparietal junction (TPJ), during resting-state functional magnetic resonance imaging (rs-fMRI) is associated with possible phenotypic features of autism (PPFA) in a large, diverse youth cohort.

View Article and Find Full Text PDF

Resting-state functional magnetic resonance imaging (rs-fMRI) is a non-invasive neuroimaging technique widely utilized in the research of Autism Spectrum Disorder (ASD), providing preliminary insights into the potential biological mechanisms underlying ASD. Deep learning techniques have demonstrated significant potential in the analysis of rs-fMRI. However, accurately distinguishing between healthy control group and ASD has been a longstanding challenge.

View Article and Find Full Text PDF

3T dilated inception network for enhanced autism spectrum disorder diagnosis using resting-state fMRI data.

Cogn Neurodyn

December 2025

Department of Computational Intelligence, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu India.

Autism spectrum disorder (ASD) is one of the complicated neurodevelopmental disorders that impacts the daily functioning and social interactions of individuals. It includes diverse symptoms and severity levels, making it challenging to diagnose and treat efficiently. Various deep learning (DL) based methods have been developed for diagnosing ASD, which rely heavily on behavioral assessment.

View Article and Find Full Text PDF

The posterior cingulate cortex and hippocampus are the core regions involved in episodic memory, and they exhibit functional connectivity changes in the development and progression of Alzheimer's disease. Previous studies have demonstrated that the posterior cingulate cortex and hippocampus are both cytoarchitectonically heterogeneous regions. Specifically, the retrosplenial cortex, typically subsumed under the posterior cingulate cortex, is an area functionally and anatomically distinct from the posterior cingulate cortex, and the hippocampus is composed of several subregions that participate in multiple cognitive processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!