A highly discriminatory RNA strand-specific assay to facilitate analysis of the role of -acting elements in foot-and-mouth disease virus replication.

J Gen Virol

School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.

Published: July 2023

Foot-and-mouth-disease virus (FMDV), the aetiological agent responsible for foot-and-mouth disease (FMD), is a member of the genus within the family . In common with all picornaviruses, replication of the single-stranded positive-sense RNA genome involves synthesis of a negative-sense complementary strand that serves as a template for the synthesis of multiple positive-sense progeny strands. We have previously employed FMDV replicons to examine viral RNA and protein elements essential to replication, but the factors affecting differential strand production remain unknown. Replicon-based systems require transfection of high levels of RNA, which can overload sensitive techniques such as quantitative PCR, preventing discrimination of specific strands. Here, we describe a method in which replicating RNA is labelled with 5-ethynyl uridine. The modified base is then linked to a biotin tag using click chemistry, facilitating purification of newly synthesised viral genomes or anti-genomes from input RNA. This selected RNA can then be amplified by strand-specific quantitative PCR, thus enabling investigation of the consequences of defined mutations on the relative synthesis of negative-sense intermediate and positive-strand progeny RNAs. We apply this new approach to investigate the consequence of mutation of viral -acting replication elements and provide direct evidence for their roles in negative-strand synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1099/jgv.0.001871DOI Listing

Publication Analysis

Top Keywords

foot-and-mouth disease
8
synthesis negative-sense
8
quantitative pcr
8
rna
7
highly discriminatory
4
discriminatory rna
4
rna strand-specific
4
strand-specific assay
4
assay facilitate
4
facilitate analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!